It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
To effectively describe the uncertainty of remote sensing image segmentation, a novel region-based algorithm using fuzzy clustering and Kullback-Leibler (KL) distance is proposed. By regular tessellation, the image domain is completely divided into several sub-blocks to overcome the complex noise existed in high-resolution remote sensing images. Taking the blocks as the basic processing units, KL divergence is used to model the distance between blocks and clusters, which enables the model to describe the uncertainty of the non-similarity relationship. Besides, based on the theory of Markov Random Field (MRF), the regionalized KL entropy regularization term is established and added to the objective function to further consider the spatial constraints. Finally, the optimal segmentation results are obtained by estimating the parameters. The experiments carried out on different kinds of remote sensing images by comparing algorithms fully demonstrate the performance of the proposed algorithm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Center for Geospatial Information, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Center for Geospatial Information, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China