Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Perceptron is an essential element in neural network (NN)-based machine learning, however, the effectiveness of various implementations by circuits is rarely demonstrated from chip testing. This paper presents the measured silicon results for the analog perceptron circuits fabricated in a 0.6μm/±2.5 V complementary metal oxide semiconductor (CMOS) process, which are comprised of digital-to-analog converter (DAC)-based multipliers and phase shifters. The results from the measurement convinces us that our implementation attains the correct function and good performance. Furthermore, we propose the multi-layer perceptron (MLP) by utilizing analog perceptron where the structure and neurons as well as weights can be flexibly configured. The example given is to design a 2-3-4 MLP circuit with rectified linear unit (ReLU) activation, which consists of 2 input neurons, 3 hidden neurons, and 4 output neurons. Its experimental case shows that the simulated performance achieves a power dissipation of 200 mW, a range of working frequency from 0 to 1 MHz, and an error ratio within 12.7%. Finally, to demonstrate the feasibility and effectiveness of our analog perceptron for configuring a MLP, seven more analog-based MLPs designed with the same approach are used to analyze the simulation results with respect to various specifications, in which two cases are used to compare to their digital counterparts with the same structures.

Details

Title
Implementation of Analog Perceptron as an Essential Element of Configurable Neural Networks
Author
Geng, Chao  VIAFID ORCID Logo  ; Sun, Qingji; Nakatake, Shigetoshi
First page
4222
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2429631637
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.