This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Adolescent idiopathic scoliosis (AIS) is defined as a three-dimensional (3D) structural deformity of the spine and is diagnosed on the basis of having a radiological lateral
In China, SSS mainly includes the following assessment methods: visual inspection, Adam’s forward bending tests (FBT), and scoliometer measurements [5, 6]. However, the use of SSS remains controversial, mainly due to the unnecessary radiography caused by overreferral, which is related to the low positive predictive value (PPV) of SSS [7]. Previous studies reported that in identifying Cobb angle more than 20° the PPV varied from 17.4%-43.6%, and for requiring treatment it varied from 5.0%-9.4% [8, 9]. To improve the PPV of scoliosis screening, it is necessary to screen predicting indicators and establish the precise prediction model to accurately identify AIS patients.
A previous meta-analysis study showed that combined use of multiple clinical signs evaluated by examiners may increase the PPV to detect scoliosis during SSS [10]. Incorrect posture (e.g., shoulder imbalance, thoracic kyphosis, and scapular tilt) refers to an abnormal body state in which the individual’s body cannot maintain a standing stability and normal function of tissues and organs in an upright body posture [11]. Evidence showed that children and adolescents with certain signs of incorrect posture may be associated with the progress to scoliosis, and these abnormal features may be helpful to predict the occurrence of AIS [12, 13]. To our knowledge, most of the previous research mainly focused on the prediction of curve progression in AIS patients or using a complex analysis method that was difficult for clinicians to understand [14–16]. Nault et al. built a prediction model using general linear methods with the 3D spine parameters and clinical parameters as predictors and found a PPV of 79% to identify a curve of 35° [15]. Xu et al. developed a genetic predictive model to evaluate the discriminative power between AIS patients and normal controls found a remarkably higher proportion of risk score in patients than in the controls (59.0% vs. 28.9%) [16]. However, it is still unclear whether the signs of incorrect posture commonly used in SSS can effectively predict the occurrence of AIS. Logistic regression (LR) model which is widely used to distinguish binary variables has been shown to have a high diagnostic accuracy in many diseases, but there are still few relevant studies to explore its predictive effects on the occurrence of AIS.
Therefore, we collected data from the 2019 School Scoliosis Screening Program for AIS (SSSPA) in China. We assumed that some signs of incorrect posture may be associated with the occurrence of AIS, and the combined use of multiple predictors could improve the accuracy of the prediction model. We aimed to examine the prevalence of incorrect posture stratified by AIS and to establish a prediction model basing on LR method with different adjusted weights, so as to improve the prediction accuracy and provide targeted prevention strategies for AIS.
2. Methods
2.1. Subjects and Data Collection
Data of the study was collected from the 2019 SSSPA in China, which is an ongoing school scoliosis screening program targeted for Chinese children and adolescents (1st-12th grade). SSSPA, as part of the national public health project, which is conducted and administered by the Shenzhen Youth Spine Health Center (SYSHC) of the Shenzhen Second People’s Hospital with a national scoliosis screening standardized protocol (GB/T 16133-2014) [17], collects large-scale population-based scoliosis-related data every year since 2013. Students in primary schools, junior high schools, and senior high schools were invited to participate in the screening program voluntarily. School scoliosis screening was performed by an experienced team of trained rehabilitation therapists from SYSHC using the visual inspection, Adam’s FBT, and measurement of the angle of trunk rotation (ATR) using the scoliometer [7]. When students had an
To protect the privacy of the students, all subjects were screened for scoliosis in a closed room or tent and administered by research assistants without the presence of teachers or other school personnel (to avoid potential information bias). All data were collected from September 2019 to January 2020.
For the purpose of our study, subjects with a clinical diagnosis of congenital scoliosis or neuromuscular scoliosis would be excluded. In total, a sample of 884 students was classified as AIS patients (case group) with a
2.2. Ethical Statement
This study was conducted in accordance with the Declaration of Helsinki and was approved by the Shenzhen Municipal Health Commission Institutional Review Board (ethics number: SWJGW201934). Written or oral informed consent was obtained from the parent or legal guardian of each participating student under 18 years old or from each participating student who were at least 18 years old.
2.3. School Scoliosis Screening
Students would be required to wear tight clothing and underwear before school scoliosis screening. All students who volunteered to participate in the scoliosis screening would be divided into two groups according to their gender, and each group of students entered one by one in a sealed tent or room to protect personal privacy. To improve the accuracy of body posture measurement, students would only wear underwear during the screening; if someone refused this request for certain reason (such as unwilling to let the examiners to see their bodies), we would respect their personal choice and allow them to wear tight clothing for screening. During the screening, the subjects would wear their shoes and maintain a natural standing posture, the distance between their feet would be required to be as wide as the shoulders, their eyes needed to look straight ahead, and the arms should sag naturally.
2.4. Measurements
Based on the previous evidence [10], the combined use of multiple clinical signs may improve the PPV to detect AIS. In our previous large-scale population-based (595,057 students) study, we found that some signs of incorrect posture could help us early detect the occurrence of AIS [19]. To explore the potential predictors and establish an accurate prediction model of the AIS, the measurement variables used in the study contained information from demographic information and multiple signs of incorrect posture [5].
Demographic characteristics included gender (boys or girls), age (year), and school category (primary school, junior high school, or senior high school). Incorrect posture was assessed by the visual inspection, Adam’s FBT, and ATR (Figure 1). Each student participating in the screening was judged by two independent therapists separately. If the results were inconsistent, a third therapist would make a final judgment to minimize subjective bias. The standard visual inspection was performed in the upright position, and the examiners checked for spine alignment, shoulder asymmetry (e.g., shoulder-height difference), scapular prominence (e.g., scapular tilt), hip and pelvic obliquity (e.g., pelvic tilt), thoracic curvature (e.g., flat back, thoracic kyphosis), lumbar curvature (e.g., lumbar concave, lumbar kyphosis), distance of hands from the flanks, and length of the lower limbs and scapular [6]. The Adam’s FBT was performed with the student’s feet placed together, knees straight, while bending at the hips to nearly 90° with their arms freely hanging forward, palms together. Students with any significant physical signs were recorded. The ATR was measured with a scoliometer to quantitative assessment of the angle of thoracic rotation, angel of lumbar rotation, and angle of thoracolumbar rotation. When students were assessed with an
2.5. Statistical Analysis
First, descriptive analyses were conducted to describe the demographic characteristics and incorrect posture of children and adolescents stratified by AIS, chi-square (
3. Results
3.1. Demographic Characteristics of Children and Adolescents Stratified by AIS
As shown in Table 1, of the total sample analyzed, 884 (49.7%) students were diagnosed with AIS, and 895 (50.3%) students were non-AIS. AIS was more common in girls than in boys (64.8% vs. 36.1%,
Table 1
Demographic characteristics of participants and the prevalence of incorrect posture stratified by AIS (
Variables | Non-AIS group ( | AIS group ( | ||
Total | 895 (50.3) | 884 (49.7) | ||
Gender | 146.84 | <0.001 | ||
Boys | 572 (63.9) | 311 (35.2) | ||
Girls | 323 (36.1) | 573 (64.8) | ||
Age (year)a | -4.63 | <0.001 | ||
School category | 34.29 | <0.001 | ||
Primary school | 359 (40.1) | 239 (27.0) | ||
Junior high school | 374 (41.8) | 458 (51.8) | ||
Senior high school | 162 (18.1) | 187 (21.2) | ||
Shoulder-height difference | 333.96 | <0.001 | ||
Normal | 779 (87.0) | 410 (46.4) | ||
Left shoulder height | 73 (8.2) | 252 (28.5) | ||
Right shoulder height | 43 (4.8) | 222 (25.1) | ||
Scapular tilt | 554.97 | <0.001 | ||
Normal | 764 (85.4) | 268 (30.3) | ||
Tilt to the left | 85 (9.5) | 349 (39.5) | ||
Tilt to the right | 46 (5.1) | 267 (30.2) | ||
Lumbar concave | 346.90 | <0.001 | ||
Normal | 814 (90.9) | 450 (50.9) | ||
Left concave | 31 (3.5) | 181 (20.5) | ||
Right concave | 50 (5.6) | 253 (28.6) | ||
Pelvic tilt | 130.22 | <0.001 | ||
Normal | 860 (96.1) | 694 (78.5) | ||
Tilt to the left | 23 (2.6) | 68 (7.7) | ||
Tilt to the right | 12 (1.3) | 122 (13.8) | ||
Flat back | 4.57 | 0.033 | ||
Normal | 893 (99.8) | 875 (99.0) | ||
Abnormal | 2 (0.2) | 9 (1.0) | ||
Thoracic kyphosis | 14.35 | <0.001 | ||
Normal | 886 (99.0) | 851 (96.3) | ||
Abnormal | 9 (1.0) | 33 (3.7) | ||
Lumbar kyphosis | 0.16 | 0.694b | ||
Normal | 891 (99.6) | 882 (99.8) | ||
Abnormal | 4 (0.4) | 2 (0.2) | ||
Angle of thoracic rotation | 272.54 | <0.001 | ||
Normal (ATR: 0-5°) | 853 (95.3) | 565 (63.9) | ||
Rotate to the left ( | 18 (2.0) | 90 (10.2) | ||
Rotate to the right ( | 24 (2.7) | 229 (25.9) | ||
Angle of thoracolumbar rotation | 41.82 | <0.001 | ||
Normal (ATR: 0-5°) | 872 (97.4) | 796 (90.0) | ||
Rotate to the left ( | 9 (1.0) | 42 (4.8) | ||
Rotate to the right ( | 14 (1.6) | 46 (5.2) | ||
Angle of lumbar rotation | 261.45 | <0.001 | ||
Normal (ATR: 0-5°) | 816 (91.2) | 511 (57.8) | ||
Rotate to the left ( | 61 (6.8) | 277 (31.3) | ||
Rotate to the right ( | 18 (2.0) | 96 (10.9) |
Abbreviations: AIS: adolescent idiopathic scoliosis; n: number; ATR: angle of trunk rotation. aAge were presented as the mean (standard deviation). bUsing chi-square test continuity correction calculation.
3.2. Prevalence of Incorrect Posture Stratified by AIS
As shown in Table 1, except for lumbar kyphosis, the prevalence of all other incorrect postures was different between AIS group and non-AIS group. The angle of thoracic rotation was significantly greater in AIS group than in non-AIS group (rotate to the left: 10.2% vs. 2.0%; rotate to the right: 25.9% vs. 2.7%;
3.3. Association between Influential Factors and AIS
As shown in Table 2, the univariate LR model (model 1) was used to identify the influential factors. Gender, age, shoulder-height difference, scapular tilt, lumbar concave, pelvic tilt, thoracic kyphosis, angle of thoracic rotation, angle of thoracolumbar rotation, and angle of lumbar rotation were significantly associated with AIS (
Table 2
Association between potential risk factors and AIS among Chinese children and adolescents (
Variables | AIS: model 1a | AIS: model 2b | ||||
OR | 95% CI | AOR | 95% CI | |||
Gender | ||||||
Boys | 1.00 | 1.00 | ||||
Girls | 3.26 | 2.69-3.96 | <0.001 | 1.88 | 1.43-2.48 | <0.001 |
Age (1-year increase) | 1.14 | 1.08-1.19 | <0.001 | 1.09 | 1.02-1.17 | 0.016 |
Shoulder-height difference | ||||||
Normal | 1.00 | 1.00 | ||||
Left shoulder height | 6.56 | 4.92-8.74 | <0.001 | 2.98 | 1.88-4.72 | <0.001 |
Right shoulder height | 9.81 | 6.93-13.89 | <0.001 | 4.17 | 2.49-7.01 | <0.001 |
Scapular tilt | ||||||
Normal | 1.00 | 1.00 | ||||
Tilt to the left | 11.71 | 8.89-15.41 | <0.001 | 2.23 | 1.43-3.46 | <0.001 |
Tilt to the right | 16.55 | 11.75-23.30 | <0.001 | 2.53 | 1.53-4.16 | <0.001 |
Lumbar concave | ||||||
Normal | 1.00 | 1.00 | ||||
Left concave | 10.56 | 7.09-15.72 | <0.001 | 2.61 | 1.55-4.40 | <0.001 |
Right concave | 9.15 | 6.62-12.66 | <0.001 | 2.67 | 1.77-4.03 | <0.001 |
Pelvic tilt | ||||||
Normal | 1.00 | 1.00 | ||||
Tilt to the left | 3.66 | 2.26-5.94 | <0.001 | 0.43 | 0.23-0.81 | 0.009 |
Tilt to the right | 12.60 | 6.91-22.99 | <0.001 | 1.83 | 0.91-3.71 | 0.093 |
Flat back | ||||||
Normal | 1.00 | 1.00 | ||||
Abnormal | 4.59 | 0.99-21.32 | 0.052 | 1.39 | 0.25-7.89 | 0.707 |
Thoracic kyphosis | ||||||
Normal | 1.00 | 1.00 | ||||
Abnormal | 3.82 | 1.82-8.03 | <0.001 | 1.48 | 0.62-3.57 | 0.381 |
Lumbar kyphosis | ||||||
Normal | 1.00 | 1.00 | ||||
Abnormal | 0.51 | 0.09-2.77 | 0.431 | 0.32 | 0.04-2.59 | 0.282 |
Angle of thoracic rotation | ||||||
Normal (ATR: 0-5°) | 1.00 | 1.00 | ||||
Rotate to the left ( | 7.55 | 4.50-12.66 | <0.001 | 5.18 | 2.85-9.44 | <0.001 |
Rotate to the right ( | 14.41 | 9.34-22.23 | <0.001 | 10.06 | 6.11-16.56 | <0.001 |
Angle of thoracolumbar rotation | ||||||
Normal (ATR: 0-5°) | 1.00 | 1.00 | ||||
Rotate to the left ( | 5.11 | 2.47-10.57 | <0.001 | 7.22 | 3.18-16.38 | <0.001 |
Rotate to the right ( | 3.60 | 1.96-6.60 | <0.001 | 4.67 | 2.28-9.55 | <0.001 |
Angle of lumbar rotation | ||||||
Normal (ATR: 0-5°) | 1.00 | 1.00 | ||||
Rotate to the left ( | 7.25 | 5.38-9.77 | <0.001 | 6.97 | 4.84-10.05 | <0.001 |
Rotate to the right ( | 8.52 | 5.09-14.26 | <0.001 | 8.09 | 4.46-14.68 | <0.001 |
Abbreviations: AIS: adolescent idiopathic scoliosis; OR: odds ratio; AOR: adjusted odds ratio; CI: confidence interval; ATR: angle of trunk rotation. aModel 1 is a univariate logistic regression model. bModel 2 is a multivariate logistic regression model.
Furthermore, a multivariate LR method (model 2) was applied to examine the independent effects of the influential factors associated with AIS. Table 2 showed that gender (
3.4. Compare the Discrimination Effects of Influential Factors Based on ROC Curves Analyses
As shown in Figure 2, ROC curves and AUC scores were used to compare the discrimination effects between different influential factors. Similar to the results of LR models, gender (
3.5. Prediction Model for AIS Based on LR Models with Different Adjusted Weights
As shown in Table 3, LR models with different adjusted weights (by AOR, AUC, and AOR+AUC) were used to establish the prediction model in predicting the occurrence of AIS and were compared with multivariate LR model in terms of their predictive effects. The final results indicated that compared to the multivariate LR model (
Table 3
Comparison of prediction effects of different logistic regression models.
Indicator | Model 1a | Model 2b | Model 3c | Model 4d |
Se | 82.55% | 83.27% | 83.27% | 83.27% |
Sp | 82.59% | 82.59% | 83.33% | 82.59% |
YI | 0.65 | 0.66 | 0.67 | 0.66 |
PPV | 82.85% | 82.97% | 83.58% | 82.97% |
NPV | 82.29% | 82.90% | 83.03% | 82.90% |
Total Ac | 82.57% | 82.94% | 83.30% | 82.94% |
Abbreviations: Se: sensitivity; Sp: specificity; YI: Youden’s index; PPV: positive predictive value; NPV: negative predictive value; Ac: accuracy.
The mathematical equations of the prediction models were shown as follows:
Abbreviations: X1: gender; X2: age; X3: shoulder-height difference; X4: scapular tilt; X5: lumbar concave; X6: pelvic tilt; X7: flat back; X8: thoracic kyphosis; X9: lumbar kyphosis; X10: angle of thoracic rotation; X11: angle of thoracolumbar rotation; X12: angle of lumbar rotation.
Equation 1 was the multivariate logistic regression model.
Equation 2 was the multivariate logistic regression model adjusted by weighting AOR value.
Equation 3 was the multivariate logistic regression model adjusted by weighting AUC value.
Equation 4 was the multivariate logistic regression model adjusted by weighting AOR and AUC value.
4. Discussion
In the 2019 SSSPA, students with scoliosis could be identified by the visual inspection of clinical signs and the Adam’s FBT. Moreover, the application of scoliometer to measure the angle of trunk would help to improve the accuracy of screening. Our study was consistent with a previous systematic review conducted by Dunn et al. for the US Preventive Services Task Force (USPSTF) which suggested that AIS could be identified with Adam’s FBT, scoliometer, or both [20]. Although estimation of predictive value and sensitivity was variable in different countries or population, our study conducted in the Chinese children and adolescents showed that the LR models could be trained to detect the occurrence of AIS and to identify cases with a curve ≥10°, with higher values than previous scoliosis screening in sensitivity, specificity, Youden’s index, PPV, NPV, and total accuracy. Therefore, our LR models could be considered as a high accurate and feasible method in improving PPV and avoid unnecessary radiograph examination for scoliosis screening.
The univariate LR and ROC curves results indicated that the incorrect posture was associated with AIS among children and adolescents. After adjusted for covariates, multivariate LR model showed that angle of trunk may have the strongest relationship with AIS. Our results were consistent with a prospective 2-year follow-up study which indicated that the maximum angle of trunk was related to the severity of AIS compared to healthy adolescents [21]. An investigation study conducted in 27 AIS patients also showed that 3D trunk shape measured by angle of thoracic at each vertebral level was highly correlated with radiological deformity [22]. Consistent with the previous research [23], we found that shoulder-height difference, scapular tilt, lumbar concave, pelvic tilt, and other clinical signs were significantly associated with the occurrence of AIS. Using biomechanics and three-dimensional spatial positioning methods, some researcher speculated the alterations of shoulder, scapular, and lumbar spine could be considered as the adaptive compensation or muscle activation strategies in AIS patients [24–26]. Interestingly, pelvic tilt to the left (
Furthermore, the prediction model based on LR models with different adjusted weights (by AOR, AUC, and AOR+AUC) in the current study indicated that LR has its own merit on predicting the occurrence of AIS. THE multivariate LR model has the advantages to filter the mess influencing factors easily. The adjusted odds ratio value of each factor could be compared directly and was easy to give the professional interpretation. In addition, we established prediction models based on the LR method with different adjusted weights; the combined use of AOR and AUC could merge their respective advantages and showed a high prediction accuracy. AOR aimed to reflect the relationship between the independent variable and dependent variable, and AUC was suitable for evaluating the diagnostic performance of the indicators. Interestingly, there were no significant differences between the multivariate LR model and LR models with different adjusted weights in the prediction accuracy. The possible reason was related to the relatively small sample size of cases and the outcome variable being a binary variable. Increasing sample size and multiclassification of outcomes (e.g.,
Several aspects may contribute to the superiority of our prediction model. First, using only data from visual inspections of clinical signs and angle of the trunk, our LR models showed a higher and comparable prediction accuracy than the previous research. In the study by Karachalios et al. [28], the PPV ranged from 4.8%-13.3%; Fong et al. [10] and Yawn et al. [8] reported an improved PPV from 29.3% to 81.0% in their study. Our LR models showed the PPV ranged from 82.85% to 83.58% (sensitivity of 82.55%-83.27%, specificity of 82.59%-83.33%, total accuracy of 82.57%-83.30%) when AIS is identified with a
The present study had several limitations that were worth noting. First, due to the cross-sectional nature of the data, it was not possible to make causal inferences. Second, our data mainly came from subjective physical examinations; although the measurement results in the study were assessed by two independent observers, measurement bias between observers for the severity of incorrect posture might exist. Third, although gender, age, and incorrect posture were showed to be important factors for the occurrence of AIS, other relevant influencing factors (e.g., genetics, hormone, and nutritional status) [30–32] were not investigated in our study.
5. Conclusion
Our prediction models based on LR method can be potentially applied in routine scoliosis screening without unnecessary radiation exposure and offer a relatively high accurate and feasible method for incorporating clinical signs to predict the occurrence of AIS among children and adolescents. Increased performance of LR models using clinically relevant variables offers the potential to early identify suspicious AIS patients and provide early warning for timely intervention and treatment of these high-risk groups. Our findings showed that angle of trunk rotation >5° could be considered as the best predictor to identify the occurrence of AIS, when the combined use of
Authors’ Contributions
Guohui Nie and Yeen Huang contributed equally to this study.
Acknowledgments
The authors would like to express sincere respect to the local health professional and education bureau for their valuable contribution in setting up the school screening program. Moreover, we would like to express our heartfelt thanks to all the therapists for their help with the school scoliosis screening and data collection. Finally, we are very grateful for the professional language guidance provided by Ms. Qiaohong Chen. This work was supported by the scoliosis screening program for primary and secondary school students in Shenzhen (project number: SFG [2019] No.780), study on the training effects of adolescent idiopathic scoliosis in Shenzhen (project number: no. 20193357005), and Shenzhen key medical discipline construction fund.
[1] F. Altaf, A. Gibson, Z. Dannawi, H. Noordeen, "Adolescent idiopathic scoliosis," BMJ, vol. 346,DOI: 10.1136/bmj.f2508, 2013.
[2] J. C. Cheng, R. M. Castelein, W. C. Chu, A. J. Danielsson, M. B. Dobbs, T. B. Grivas, C. A. Gurnett, K. D. Luk, A. Moreau, P. O. Newton, I. A. Stokes, S. L. Weinstein, R. G. Burwell, "Adolescent idiopathic scoliosis," Nature Reviews Disease Primers, vol. 1 no. 1,DOI: 10.1038/nrdp.2015.30, 2015.
[3] H. L. Brooks, S. P. Azen, E. Gerberg, R. Brooks, L. Chan, "Scoliosis," The Journal of Bone and Joint Surgery. American Volume, vol. 57 no. 7, pp. 968-972, DOI: 10.2106/00004623-197557070-00015, 1975.
[4] J. E. Lonstein, "Why school screening for scoliosis should be continued," Spine (Phila Pa 1976), vol. 13 no. 10, pp. 1198-1199, DOI: 10.1097/00007632-198810000-00029, 1988.
[5] F. Hengwei, H. Zifang, W. Qifei, T. Weiqing, D. Nali, Y. Ping, Y. Junlin, "Prevalence of idiopathic scoliosis in Chinese Schoolchildren," SPINE, vol. 41 no. 3, pp. 259-264, DOI: 10.1097/BRS.0000000000001197, 2016.
[6] K. D. K. Luk, C. F. Lee, K. M. C. Cheung, J. C. Y. Cheng, B. K. W. Ng, T. P. Lam, K. H. Mak, P. S. F. Yip, D. Y. T. Fong, "Clinical effectiveness of school screening for adolescent idiopathic scoliosis: a large population-based retrospective cohort study," Spine, vol. 35 no. 17, pp. 1607-1614, DOI: 10.1097/BRS.0b013e3181c7cb8c, 2010.
[7] US Preventive Services Task Force, D. C. Grossman, S. J. Curry, D. K. Owens, M. J. Barry, K. W. Davidson, C. A. Doubeni, J. W. Epling, A. R. Kemper, A. H. Krist, A. E. Kurth, C. S. Landefeld, C. M. Mangione, M. G. Phipps, M. Silverstein, M. A. Simon, C.-W. Tseng, "Screening for adolescent idiopathic Scoliosis," Journal of the American Medical Association, vol. 319 no. 2, pp. 165-172, DOI: 10.1001/jama.2017.19342, 2018.
[8] B. P. Yawn, R. A. Yawn, D. Hodge, M. Kurland, W. J. Shaughnessy, D. Ilstrup, S. J. Jacobsen, "A population-based study of school scoliosis screening," Journal of the American Medical Association, vol. 282 no. 15, pp. 1427-1432, DOI: 10.1001/jama.282.15.1427, 1999.
[9] D. Y. T. Fong, K. M. C. Cheung, Y.-W. Wong, Y.-Y. Wan, C.-F. Lee, T.-P. Lam, J. C. Y. Cheng, B. K. W. Ng, K. D. K. Luk, "A population-based cohort study of 394,401 children followed for 10 years exhibits sustained effectiveness of scoliosis screening," The Spine Journal, vol. 15 no. 5, pp. 825-833, DOI: 10.1016/j.spinee.2015.01.019, 2015.
[10] D. Y. T. Fong, C. F. Lee, K. M. C. Cheung, J. C. Y. Cheng, B. K. W. Ng, T. P. Lam, K. H. Mak, P. S. F. Yip, K. D. K. Luk, "A meta-analysis of the clinical effectiveness of school scoliosis screening," Spine, vol. 35 no. 10, pp. 1061-1071, DOI: 10.1097/BRS.0b013e3181bcc835, 2010.
[11] M. Dolphens, B. Cagnie, P. Coorevits, G. Vanderstraeten, G. Cardon, R. D’hooge, L. Danneels, "Sagittal standing posture and its association with spinal pain: a school-based epidemiological study of 1196 Flemish adolescents before age at peak height velocity," Spine, vol. 37 no. 19, pp. 1657-1666, DOI: 10.1097/BRS.0b013e3182408053, 2012.
[12] M. Nissinen, M. Heliovaara, J. Seitsamo, M. Poussa, "Trunk asymmetry, posture, growth, and risk of scoliosis. A three-year follow-up of Finnish prepubertal school children," Spine, vol. 18 no. 1,DOI: 10.1097/00007632-199301000-00002, 1993.
[13] M. L. Nault, P. Allard, S. Hinse, R. le Blanc, O. Caron, H. Labelle, H. Sadeghi, "Relations between standing stability and body posture parameters in adolescent idiopathic scoliosis," Spine (Phila Pa 1976), vol. 27 no. 17, pp. 1911-1917, DOI: 10.1097/00007632-200209010-00018, 2002.
[14] H. Koller, W. Hitzl, M. C. Marks, P. O. Newton, "Accurate prediction of spontaneous lumbar curve correction following posterior selective thoracic fusion in adolescent idiopathic scoliosis using logistic regression models and clinical rationale," European Spine Journal, vol. 28 no. 9, pp. 1987-1997, DOI: 10.1007/s00586-019-06000-6, 2019.
[15] M. L. Nault, M. Beauséjour, M. Roy-Beaudry, J. M. Mac-Thiong, J. de Guise, H. Labelle, S. Parent, "A predictive model of progression for adolescent idiopathic scoliosis based on 3D spine parameters at first visit," Spine, vol. 45 no. 9, pp. 605-611, DOI: 10.1097/BRS.0000000000003316, 2020.
[16] L. Xu, Z. Wu, C. Xia, N. Tang, J. C. Y. Cheng, Y. Qiu, Z. Zhu, "A genetic predictive model estimating the risk of developing adolescent idiopathic scoliosis," Current Genomics, vol. 20 no. 4, pp. 246-251, DOI: 10.2174/1389202920666190730132411, 2019.
[17] National Health and Family Planning Commission of the people's Republic of China and National Standardization Administration Commission of China, Screening of spinal curvature abnormality of children and adolescents (GB/T 16133-2014), . January 2020 Available online: http://dandong.gov.cn/docs/2019-06/20190618095730294569.pdf
[18] H. K. Wong, J. H. P. Hui, U. Rajan, H. P. Chia, "Idiopathic scoliosis in Singapore Schoolchildren," Spine, vol. 30 no. 10, pp. 1188-1196, DOI: 10.1097/01.brs.0000162280.95076.bb, 2005.
[19] L. Yang, X. H. Lu, B. Yan, Y. E. Huang, "Prevalence of incorrect posture among children and adolescents: Finding from a large population-based study in China," iScience, vol. 23 no. 5,DOI: 10.1016/j.isci.2020.101043, 2020.
[20] J. Dunn, N. B. Henrikson, C. C. Morrison, P. R. Blasi, M. Nguyen, J. S. Lin, "Screening for adolescent idiopathic scoliosis: evidence report and systematic review for the US preventive services task force," Journal of the American Medical Association, vol. 319 no. 2, pp. 173-187, DOI: 10.1001/jama.2017.11669, 2018.
[21] R. K. Pratt, R. G. Burwell, A. A. Cole, J. K. Webb, "Patient and parental perception of adolescent idiopathic scoliosis before and after surgery in comparison with surface and radiographic measurements," Spine, vol. 27 no. 14, pp. 1543-1550, DOI: 10.1097/00007632-200207150-00012, 2002.
[22] N. D. Scutt, P. H. Dangerfield, J. C. Dorgan, "The relationship between surface and radiological deformity in adolescent idiopathic scoliosis: effect of change in body position," European Spine Journal, vol. 5 no. 2, pp. 85-90, DOI: 10.1007/BF00298386, 1996.
[23] V. J. Raso, E. Lou, D. L. Hill, J. K. Mahood, M. J. Moreau, N. G. Durdle, "Trunk distortion in adolescent idiopathic scoliosis," Journal of Pediatric Orthopedics, vol. 18 no. 2, pp. 222-226, DOI: 10.1097/01241398-199803000-00017, 1998.
[24] M. K. Kwan, K. A. Wong, C. K. Lee, C. Y. W. Chan, "Is neck tilt and shoulder imbalance the same phenomenon? A prospective analysis of 89 adolescent idiopathic scoliosis patients (Lenke type 1 and 2)," European Spine Journal, vol. 25 no. 2, pp. 401-408, DOI: 10.1007/s00586-015-4016-9, 2016.
[25] E. Turgut, G. Gur, C. Ayhan, Y. Yakut, G. Baltaci, "Scapular kinematics in adolescent idiopathic scoliosis: a three-dimensional motion analysis during multiplanar humeral elevation," Journal of Biomechanics, vol. 61, pp. 224-231, DOI: 10.1016/j.jbiomech.2017.07.029, 2017.
[26] I. A. F. Stokes, M. Gardner-Morse, "Muscle activation strategies and symmetry of spinal loading in the lumbar spine with scoliosis," Spine (Phila Pa 1976), vol. 29 no. 19, pp. 2103-2107, DOI: 10.1097/01.brs.0000141182.42544.1f, 2004.
[27] L. Saetang, P. Sakulsriprasert, M. Vongsirinavarat, "The adaptive patterns of pelvic alignment in individuals with adolescent idiopathic scoliosis," Journal of the Medical Association of Thailand, vol. 98, pp. S119-S124, 2015.
[28] T. Karachalios, J. Sofianos, N. Roidis, G. Sapkas, D. Korres, K. Nikolopoulos, "Ten-year follow-up evaluation of a school screening program for scoliosis. Is the forward-bending test an accurate diagnostic criterion for the screening of scoliosis?," Spine, vol. 24 no. 22, pp. 2318-2324, DOI: 10.1097/00007632-199911150-00006, 1999.
[29] J. Yang, K. Zhang, H. Fan, Z. Huang, Y. Xiang, J. Yang, L. He, L. Zhang, Y. Yang, R. Li, Y. Zhu, C. Chen, F. Liu, H. Yang, Y. Deng, W. Tan, N. Deng, X. Yu, X. Xuan, X. Xie, X. Liu, H. Lin, "Development and validation of deep learning algorithms for scoliosis screening using back images," Communications Biology, vol. 2 no. 1,DOI: 10.1038/s42003-019-0635-8, 2019.
[30] S. L. Weinstein, L. A. Dolan, J. C. Y. Cheng, A. Danielsson, J. A. Morcuende, "Adolescent idiopathic scoliosis," Lancet, vol. 371 no. 9623, pp. 1527-1537, DOI: 10.1016/S0140-6736(08)60658-3, 2008.
[31] Y. Yang, Z. Wu, T. Zhao, H. Wang, D. Zhao, J. Zhang, Y. Wang, Y. Ding, G. Qiu, "Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes," Orthopedics, vol. 32 no. 6, pp. 411-416, DOI: 10.3928/01477447-20090511-08, 2009.
[32] A. S. Sousa, I. Fonseca, F. Pichel, T. F. Amaral, "Effects of posture and body mass index on body girth assessment," Nutrition in Clinical Practice, vol. 31 no. 5, pp. 690-694, DOI: 10.1177/0884533616629634, 2016.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2020 Bin Yan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/
Abstract
Objective. Adolescent idiopathic scoliosis (AIS) affects 1%-4% of adolescents in the early stages of puberty, but there is still no effective prediction method. This study aimed to establish a prediction model and validated the accuracy and efficacy of this model in predicting the occurrence of AIS. Methods. Data was collected from a population-based school scoliosis screening program for AIS in China. A sample of 884 children and adolescents with the radiological lateral
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of spine surgery, The First Affiliated Hospital of Shenzhen University, Number 3002, Sungang west road, Futian district, Shenzhen 518035, China; Department of spine surgery, The Shenzhen Second People’s Hospital, Number 3002, Sungang west road, Futian district, Shenzhen 518035, China; Shenzhen Youth Spine Health Center, Shenzhen, Number 2008, Sungang west road, Futian district, 518000, China
2 Department of otolaryngology, The First Affiliated Hospital of Shenzhen University, Number 3002, Sungang west road, Futian district, Shenzhen 518035, China