Abstract

Super-critical water gasification of biomass is a promising technology for hydrogen production. In order to achieve high hydrogen yield and complete gasification, the operating parameters were investigated and the solid residual was analyzed to study the reaction bottleneck by Fourier transform infrared spectroscopy and scanning electron microscopy. The experimental results showed that most organic functional groups in corn cob were consumed by super-critical water above 500°C, however, the aromatic substance and cyclic ketone were remained. The K2CO3 has the best catalytic effect due to the formation of pore structure in the residual particle surface. The carbon gasification efficiency of 97.97% and the hydrogen yield was 50.28 mol/kg.

Details

Title
Interfacial surface investigation of super-critical water gasification of corn cob
Author
Jin, Hui; Wu, Zhen-Qun; Xiao-Hui, Su; Lie-Jin, Guo; Xing-Xing, Song
Pages
S895-S901
Section
Part Three: The topics related to the fractal theory, and heat and fluid flow
Publication year
2016
Publication date
2016
Publisher
Society of Thermal Engineers of Serbia
ISSN
0354-9836
e-ISSN
2334-7163
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2429783111
Copyright
© 2016. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.