It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Super-critical water gasification of biomass is a promising technology for hydrogen production. In order to achieve high hydrogen yield and complete gasification, the operating parameters were investigated and the solid residual was analyzed to study the reaction bottleneck by Fourier transform infrared spectroscopy and scanning electron microscopy. The experimental results showed that most organic functional groups in corn cob were consumed by super-critical water above 500°C, however, the aromatic substance and cyclic ketone were remained. The K2CO3 has the best catalytic effect due to the formation of pore structure in the residual particle surface. The carbon gasification efficiency of 97.97% and the hydrogen yield was 50.28 mol/kg.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer