It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the present paper, three-dimensional equations for coupled heat and mass conservation equations for wood are solved to study the transient heat and mass transfer during high thermal treatment of wood. The model is based on Luikov’s approach, including pressure. The model equations are solved numerically by the commercial package FEMLfor the temperature and moisture content histories under different treatment conditions. The simulation of the proposed conjugate problem allows the assessment of the effect of the heat and mass transfer within wood. A parametric study was also carried out to determine the effects of several parameters such as initial moisture content and the sample thickness on the temperature, pressure and moisture content distributions within the samples during heat treatment.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





