It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The velocity of axially moving slender fiber of viscoelastic fluid is an important factor in mass-production of crimped fibers in stuffer box crimping and bubble electrospinning. A governing equation for fiber crimp is obtained by the Hamilton’s principle, and the natural frequency and critical axially moving velocity are obtained analytically by considering the thermal effect. It is concluded that a high temperature gradient can greatly enhance the production ratio and guarantee the fundamental transverse vibration. Additionally the effects of the tensile axial load and amplitude on transverse vibration are also elucidated.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer