It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The capsular polysaccharide obtained from Escherichia coli K4 is a glycosaminoglycan-like molecule, similar to chondroitin sulphate, that has established applications in the biomedical field. Recent efforts focused on the development of strategies to increase K4 polysaccharide fermentation titers up to technologically attractive levels, but an aspect that has not been investigated so far, is how changes in the molecular machinery that produces this biopolymer affect its molecular weight. In this work, we took advantage of recombinant E. coli K4 strains that overproduce capsular polysaccharide, to study whether the inferred pathway modifications also influenced the size of the produced polymer. Fed-batch fermentations were performed up to the 22 L scale, in potentially industrially applicable conditions, and a purification protocol that allows in particular the recovery of high molecular weight unsulphated chondroitin, was developed next. This approach allowed to determine the molecular weight of the purified polysaccharide, demonstrating that kfoF overexpression increased polymer size up to 133 kDa. Higher polysaccharide titers and size were also correlated to increased concentrations of UDP-GlcA and decreased concentrations of UDP-GalNAc during growth. These results are interesting also in view of novel potential applications of higher molecular weight chondroitin and chondroitin sulphate in the biomedical field.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Campania L. Vanvitelli, Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Napoli, Italy