This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Mining-induced subsidence has accounted for 50% of the total geological disasters caused by mining in China and affected an area of 314765 hm2. This condition has attracted widespread attention and required the effective reclamation of subsided lands [1, 2]. Traditionally, subsidence areas in mines act as disposal sites of solid wastes from the mines. In the recent years, new methods for reclaiming subsidence areas, such as filling subsidence areas with rocks blasted from surrounding mountains or with filter cakes made of tailings and converting these areas to tailing ponds, have emerged [3, 4]. These methods are effective for subsided grounds free from mining influence (which indicates that no mining activity occurs in the underlying strata), but are unsuitable for subsided grounds that are still affected by mining activities in the underlying strata [5–7]. Waste rocks and tailings in a mine in Guangxi Province are manufactured into a paste to fill the subsidence area, which is in an active state. The amount of fill required is estimated to be 5 million m3. Considering that this area is subject to mining influence, reasonable mechanical properties of backfill body play a critical role in its successful restoration.
Existing studies have investigated the mechanical properties of fills for subsidence areas primarily through laboratory experiments and numerical simulations because subsidence areas are often dangerous. The research of Leduc and Smith on the mechanical properties of waste rock-tailing mixture discharged into a subsidence area indicated that the internal friction angle between grains in this mixture decreases with the waste rock proportion [8]. Wickland and Wilson [9] investigated the self-consolidation of tailing-waste rock mixture at different mixing ratios by using an analog device. The mixture underwent a relatively fast self-consolidation when the waste rock-to-tailing ratio was 5 : 1. Tian et al. [10] evaluated the powder percentage in the block filling of a subsidence area at Jinshandian Iron Ore Mine and the probability of deris flow occurrence. Results suggested that using the cement block and waste rock mixture to fill the subsidence area can ensure safety. Tian et al. [11] found that the soil-rock mixture tends to be strong with the increase in rock content and strength, and its mechanical properties primarily depend on soil in the mixture when the rock proportion is less than 40%.
Theoretical research on the shear strength of in situ fills should be conducted because the data from laboratory experiments cannot reflect their mechanical properties. Fill materials used to fill subsidence areas are typical granular materials with a wide range of grain sizes, and their shear strength mainly depends on the friction between grains [12–14]. Adhesive friction theory is an important basis for explaning the formation mechanism of soil and rock shear strengths [15]. Horne [16] and Penman [17] provided analytic relationships between the macroscopic shear and intergranular friction strengths. Sun et al. [18] investigated the influences of waste rock content and grain size on the shear strength of a fill for subsidence areas and explained the formation of fill shear strength on the basis of adhesive friction theory. However, they failed to provide a shear strength calculation model. Tong et al. [19] developed a method for calculating the shear strength of structural planes on the basis of adhesive friction theory and proved that this method is more reliable than the strength reduction method. In the present study, a model for calculating the shear strength of fills for subsidence areas was constructed on the basis of adhesive friction theory. Then, a theoretical calculation was performed using this model, and a verification experiment was conducted. This study aimed to find a reasonable method for determining the shear strength of fills used to restore subsided lands.
A force chain network can form in granular materials, such as soil and rock, to transfer forces when they are subjected to an external load. Considering that the forces between grains within this network are significantly greater than those between grains located outside this network, the macroscopic shear strength of granular materials are determined by the friction strength between grains within the force chain network [15, 20, 21]. Studies of [15] demonstrated that the macroscopic shear strength of granular materials depends on the friction between grains. The fills used for subsidence areas are often prepared by mixing waste rock and tailings. CT scans of the mixture samples containing different waste rock proportions (Figure 1) show that the waste rock and tailing grains are randomly distributed in the samples, and the fill is a typical granular composite with a wide range of grain sizes. This condition suggests that the shear strength of the fill is determined by the friction strength between the grains in it [18, 22, 23].
[figures omitted; refer to PDF]
2. Theory
2.1. Adhesive Friction Theory
Adhesive friction theory states that the frictional strength of soil and rock is essentially a molecular behavior in physics, roughness is an inherent quality of all surfaces of objects regardless of their smoothness, and the contact between surfaces occurs at the microbulges scattered on them (Figure 2). In the beginning, when two surfaces come into contact, the microbulges experience considerable stress caused by the normal forces
The classical theory of adhesive friction only considers the actual contact area but ignores the increase in the actual contact area caused by the relative slipping between the objects in contact. The modified theory of adhesive friction states that the normal force and friction can cause microbulges to yield and adhesive contact nodes to grow, and the actual contact area can be written as
2.2. Shear Strength Theory of a Backfill Body
Sun et al. [12, 18, 24] investigated the mechanism of shear strength of a backfill body based on the modified theory of adhesive friction. The changes in the grain size and proportion of waste rock and external pressure led to variations in the actual contact area between the grains in the backfill body, intergranular friction strength, and macroscopic shear strength of the backfill body. Therefore, the variation in the actual contact area should be first considered when constructing a shear strength model for a backfill body.
2.2.1. Variation in the Actual Contact Area of the Backfill Body Undergoing Shearing
The actual contact area between shear planes
2.2.2. Determination of Shear Strength Based on Adhesive Friction Theory
Adhesive friction theory states that the contact nodes on the shear planes are in a plastic state when the backfill body undergoes shearing. At a constant vertical stress, the friction between the shear planes is directly proportional to the actual contact area
Taking the derivative of
Letting
The expression of
3. Experimental
3.1. Direct Shear Test
A small modified direct shear apparatus was used to test the fill samples. The samples with 6.18 cm diameter and 5.0 cm height were obtained from tailings and waste rock in a mine. The waste rock particles have an important influence on the shear strength [25], so the waste rock was pulverized into three groups of fragments, which had grain sizes of −20, −15, and −10 mm, respectively. Considering the limited size of the shear cell, supersize waste rock was treated through equivalent substitution to ensure the continuous distribution of grain sizes.
In the experiment, mixture samples containing 10%, 20%, 30%, and 40% waste rock were prepared by mixing the waste rock of each grain size with tailings and water, and the mass concentration ranges from 81% to 83%. The prepared paste was poured into molds with 6.2 cm diameter and 5.0 cm height. After the samples were fully air-dried at room temperature, they were released from the molds for the direct shear test. During the direct shear test, vertical stresses of 100, 200, 300, and 400 kPa were applied to each sample successively, and a lateral shear stress was rapidly applied until shear failure occurred in each sample (Figure 3).
[figures omitted; refer to PDF]
3.2. Test Results
The direct shear test was conducted on 12 groups of samples. Table 1 shows the test results, and Figure 4 shows the shear stress-shear strain curves of some samples. The shear strength of the samples increased with the increase in vertical stress. As the proportion of waste rock increased, the shear strength initially decreased and then increased, and the minimum values were reached when the waste rock proportion was 20% or 30%. The cohesion force continuously declined, and the internal friction angle gradually increased. At the same waste rock proportion, the increase in waste rock grain size increased the shear strength, cohesion force, and internal friction angle.
Table 1
Results of the shear strength test (kPa).
Waste rock proportion (%) | Grain size (mm) | Vertical pressure (kPa) | c (kPa) | φ (°) | |||
100 | 200 | 300 | 400 | ||||
40 | −20 | 167 | 245 | 341 | 444 | 67.3 | 42.8 |
−15 | 158 | 220 | 335 | 408 | 64.3 | 40.8 | |
−10 | 144 | 236 | 305 | 399 | 50.7 | 40.6 | |
30 | −20 | 153 | 239 | 338 | 436 | 54.3 | 43.5 |
−15 | 144 | 215 | 329 | 401 | 51 | 41.5 | |
−10 | 132 | 187 | 277 | 353 | 48.5 | 37 | |
20 | −20 | 144 | 235 | 308 | 367 | 77.5 | 36.6 |
−15 | 142 | 214 | 276 | 344 | 77.3 | 33.7 | |
−10 | 139 | 189 | 265 | 329 | 68.7 | 32.9 | |
10 | −20 | 157 | 241 | 317 | 388 | 83.2 | 37.5 |
−15 | 150 | 236 | 290 | 369 | 83.8 | 35.3 | |
−10 | 147 | 212 | 272 | 330 | 87.5 | 31.4 |
[figures omitted; refer to PDF]
Shear strength normally includes two components, namely, adhesive and frictional strengths. The calculation results indicated that the frictional strength accounted for approximately 80% of the shear strength of the backfill body and was the dominant component of shear strength. The sample containing 30% waste rock with a grain size of −20 mm displayed a frictional strength of 381.31 kPa, which was equivalent to 87.52% of its total shear strength.
4. Results and Discussion
The data from the experiment were substituted into the aforementioned formulas for calculating the contact area change and shear strength, and the theoretical and experimental values of shear strength were compared.
4.1. Actual Contact Area in the Backfill Body
The relationship of shear displacement with
As presented in Figure 5, adhesive contact area
4.2. Shear Strength Calculation
After Armax was determined, the strength of adhesive friction
[figures omitted; refer to PDF]
As presented in Figure 6, the samples demonstrated theoretical adhesive friction strengths of 141.9, 218.7, 288.1, and 415.6 kPa, which were 92.7%, 91.5%, 85.23%, and 95.3% of the experimental values of maximum shear strength, respectively, when the waste rock grain size was −20 mm, waste rock proportion was 30%, and vertical stresses were 100, 200, 300, and 400 kPa. Therefore, the calculated values of adhesive friction strength were smaller than the corresponding experimental values of shear strength.
4.3. Factors Influencing the Theoretical Adhesive Friction Strength
Fills used to restore subsided lands are a typical type of granular composites made from waste rock and tailings. The variation pattern of the difference between the theoretical and experimental values of adhesive friction strength varied between samples with different mixing ratios. As shown in Figure 7, the theoretical values of shear strength were close to the experimental values when the waste rock proportion was low, and their differences increased with the increase in waste rock proportion. The relationship between vertical stress and theoretical shear strength did not exhibit an evident pattern. As the waste rock grain size increased, the difference between the theoretical and experimental results exhibited a continued increase, and its relationship with vertical stress did not exhibit a pattern, as shown in Figure 8.
[figure omitted; refer to PDF][figure omitted; refer to PDF]The results suggest that the proposed shear strength calculation method based on adhesive friction theory is applicable to homogeneous granular materials, and the values calculated using the method are close to the experimental results. Considering that the theoretical values of shear strength were smaller than the experimental values, they can be used in practical applications to ensure the stability of in situ fills for subsidence areas.
5. Conclusions
In this study, a shear strength calculation method for the backfill body used to fill subsidence areas was developed on the basis of adhesive friction theory, and a verification experiment was conducted in the laboratory. The theoretical calculation results were compared with experimental results. This study presents the following conclusions:
(1)
Actual contact area Ar is divided into two components, namely, adhesive contact area Arm and contact area reduction caused by shear displacement, Arb. Actual contact area Ar exhibited a maximum at Armax, and the shear strength reached its peak at this point. Then, the corresponding shear strength obtained through calculation was considered the maximum shear strength of the backfill body.
(2)
The values of shear strength calculated based on adhesive friction theory were smaller than those obtained from the laboratory experiment. The theoretical values of shear strength were close to the experimental values when the waste rock proportion was low, and their differences increased with the increase in waste rock proportion. The increase in waste rock grain size increased the differences between the theoretical and experimental results.
(3)
The shear strength calculation model based on adhesive friction theory applies to homogeneous mixtures. This model can be used to estimate the maximum shear strength of in situ fills and in related computational analyses.
This study presents a preliminary discussion of the theoretical method for calculating the shear strength of fills used to restore subsided grounds. Although further corrections and improvement are necessary, this research can provide a new insight into the theoretical shear strength of materials with a wide range of grain sizes, such as the waste rock-tailing mixture. The results of theoretical calculation, combined with the results of laboratory experiments, can provide support for the proper determination of the shear strength of fills used to restore subsided lands.
There are still some deficiencies in this study, which need to be improved in the future. Firstly, a lot of experiments are carried out to improve the theoretical model; secondly, field in situ experiments are carried out to make up for the shortcomings of small-scale tests; finally, the effects of parameters such as the amount of waste rock added, the size of waste rock particles, and the shear rate on the shear strength are studied.
Authors’ Contributions
Lei Liu and Wei Sun designed experiments; Wei Sun and Shengyou Zhang carried out the experiments; Jinxin Li analyzed the experimental results; Weidong Liu analyzed the data and developed analysis tools; and Wei Sun and Lei Liu wrote the manuscript.
Acknowledgments
This research was supported by the National Natural Science Foundation of China (Grant nos. 51964023, 11862010, and 51864023).
[1] F. He, Y. N. Xu, G. Qiao, "Distribution characteristics of mine geological hazards in China," Geological Bulletin of China, vol. 31, pp. 476-485, DOI: 10.1007/s10230-012-0207-3, 2012.
[2] S. Cao, G. Xue, E. Yilmaz, "Flexural behavior of fiber reinforced cemented tailings backfill under three-point bending," IEEE Access, vol. 7, pp. 139317-139328, DOI: 10.1109/access.2019.2943479, 2019.
[3] H. Chen, Z. M. Sun, G. H. Yao, "Feasibility study on the program of eliminating potential accident at veinlet belt orebody of Tongkeng mine," China Mineralogical Magazine, vol. 17, pp. 100-106, 2008.
[4] H. Lu, C. Qi, Q. Chen, D. Gan, Z. Xue, Y. Hu, "A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits," Journal of Cleaner Production, vol. 188, pp. 601-612, DOI: 10.1016/j.jclepro.2018.04.041, 2018.
[5] Y. B. Hou, J. Tang, S. X. Wei, "Research on tailings cementation and discharging technology," Metal Mine, vol. 6, pp. 59-62, 2011.
[6] Z. Yin, W. Chen, H. Hao, "Dynamic compressive test of gas-containing coal using a modified split hopkinson pressure bar system," Rock Mechanics and Rock Engineering, vol. 53 no. 2, pp. 815-829, DOI: 10.1007/s00603-019-01955-w, 2020.
[7] W. Sun, H. Wang, K. Hou, "Control of waste rock-tailings paste backfill for active mining subsidence areas," Journal of Cleaner Production, vol. 171, pp. 567-579, DOI: 10.1016/j.jclepro.2017.09.253, 2018.
[8] M. Leduc, M. E. Smith, "Tailings co disposal-innovation for cost saving and liability reduction," Latin America Mining Record, vol. 16, 2003.
[9] B. E. Wickland, G. W. Wilson, "Self-weight consolidation of mixtures of mine waste rock and tailings," Canadian Geotechnical Journal, vol. 42 no. 2, pp. 327-339, DOI: 10.1139/t04-108, 2005.
[10] Y. H. Tian, X. C. Li, N. Wei, "Experimental study of characteristics of compression and pulverization for cemented tailings blocks," Rock and Soil Mechanics, vol. 32, pp. 3597-3603, 2011.
[11] H. N. Tian, Y. Y. Jiao, H. Wang, "Research on biaxial test of mechanical characteristics on soil-rock aggregate (SRA) based on particle flow code simulation," Chinese Journal of Rock Mechanics and Engineering, vol. 34, pp. 3564-3573, 2013.
[12] W. Sun, A. X. Wu, H. J. Wang, "Experimental research on shear behavior of subsidence backfill body mixed by unclassified tailings and waste rocks," Chinese Journal of Rock Mechanics and Engineering, vol. 32, pp. 917-925, 2013.
[13] Z. Q. Yin, Z. X. Hu, Z. D. Wei, "Assessment of blasting-induced ground vibration in an open-pit mine under different rock properties," Advances in Civil Engineering, vol. 2018,DOI: 10.1155/2018/4603687, 2018.
[14] S. Cao, W. Song, "Effect of filling interval time on the mechanical strength and ultrasonic properties of cemented coarse tailing backfill," International Journal of Mineral Processing, vol. 166, pp. 62-68, DOI: 10.1016/j.minpro.2017.07.005, 2017.
[15] C. Thornton, L. Zhang, "On the evolution of stress and microstructure during general 3D deviatoric straining of granular media," Géotechnique, vol. 60 no. 5, pp. 333-341, DOI: 10.1680/geot.2010.60.5.333, 2010.
[16] M. R. Horne, "The behaviour of an assembly of rotund, rigid, cohesionless particles. III," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 310 no. 1500, pp. 21-34, DOI: 10.1098/rspa.1969.0059, 1969.
[17] A. D. M. Penman, "Shear characteristics of a saturated silt, measured in triaxial compression," Géotechnique, vol. 3 no. 8, pp. 312-328, DOI: 10.1680/geot.1953.3.8.312, 1953.
[18] W. Sun, A. Wu, K. Hou, Y. Yang, L. Liu, Y. Wen, "Real-time observation of meso-fracture process in backfill body during mine subsidence using X-ray CT under uniaxial compressive conditions," Construction and Building Materials, vol. 113, pp. 153-162, DOI: 10.1016/j.conbuildmat.2016.03.050, 2016.
[19] Z. Y. Tong, C. X. Chen, J. Xu, "Selection of shear strength of structural plane based on adhesion friction theory," Chinese Journal of Geotechnical Engineering, vol. 30, pp. 1367-1371, 2008.
[20] X. Z. Li, C. Z. Qi, Z. S. Shao, C. Xia, "Effects of crack inclination on shear failure of brittle geomaterials under compression," Arabian Journal of Geosciences, vol. 10 no. 23, pp. 529-541, DOI: 10.1007/s12517-017-3310-8, 2017.
[21] C.-P. Lu, Y. Liu, T.-B. Zhao, H.-Y. Wang, "Experimental research on shear-slip characteristics of simulated fault with zigzag-type gouge," Tribology International, vol. 99, pp. 187-197, DOI: 10.1016/j.triboint.2016.03.024, 2016.
[22] M. Wang, L. Liu, X.-Y. Zhang, L. Chen, S.-Q. Wang, Y.-H. Jia, "Experimental and numerical investigations of heat transfer and phase change characteristics of cemented paste backfill with PCM," Applied Thermal Engineering, vol. 150, pp. 121-131, DOI: 10.1016/j.applthermaleng.2018.12.103, 2019.
[23] L. Liu, C. Zhu, C. Qi, B. Zhang, K.-I. Song, "A microstructural hydration model for cemented paste backfill considering internal sulfate attacks," Construction and Building Materials, vol. 211, pp. 99-108, DOI: 10.1016/j.conbuildmat.2019.03.222, 2019.
[24] W. Sun, K. Hou, Z. Y. Yang, "X-ray CT three-dimensional reconstruction and discrete element analysis of the cement paste backfill pore structure under uniaxial compression," Construction and Building Materials, vol. 138, pp. 69-78, DOI: 10.1016/j.conbuildmat.2017.01.088, 2017.
[25] C. S. Wen, V. Marzulli, F. Cafaro, K. Senetakis, T. Pöschel, "Micromechanical behavior of DNA-1A lunar regolith simulant in comparison to ottawa sand," Journal of Geophysical Research: Solid Earth, vol. 124 no. 8, pp. 8077-8100, DOI: 10.1029/2019jb017589, 2019.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2020 Lei Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/
Abstract
Proper determination of the shear strength of the backfill body used to fill the subsidence is the basis for subsidence restoration and the stability analysis of materials. This study developed a shear strength calculation model for the backfill body by introducing adhesive friction theory into the shear strength analysis. A direct shear test was performed in the laboratory to verify the proposed method. Test results suggested that the shear strength calculation method based on adhesive friction theory can calculate the variation in the actual contact area between grains in the tested samples undergoing shearing and estimate the peak shear strength. The actual contact area was divided into two components, namely, adhesive contact area Arm and contact area reduction caused by shear displacement, which exhibited a maximum at Armax. The shear strength values calculated by this method were smaller than laboratory values, and their differences increased with the rock proportion in the backfill body. The differences between the theoretical and experimental values of shear strength increased with the rock grain size. The results of theoretical calculation, combined with the results of laboratory experiments, can provide support for the proper determination of shear strength of the backfill body.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China; Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Kunming 650093, China
2 No. 3 Mining District of Jinchuan Group Co. Ltd., Jinchang 737103, China
3 Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China