It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Satellite imaging direction angles, including the azimuth angle and the incidence angle, are the basic information used for satellite camera network structure analysis. They play an important role in 3D reconstruction using satellite images. In this paper, a satellite imaging direction angle estimation method based on rational polynomial coefficients is proposed for use when the satellite imaging direction angles are not available. Using rational polynomial coefficients, a vertical line on the ground is projected into the image plane, and the satellite imaging direction angles are estimated by analyzing the projection. Satellite images acquired by SPOT6, SOPT7 and Pleiades with different satellite imaging direction angles were used to test the feasibility of the proposed method. The experimental results were analyzed in detail combined with the method and the data. The experimental results show that the azimuth angle estimation error is less than 1.30 degrees, and the incidence angle estimation error is less than 0.83 degrees. This level of accuracy is sufficient for satellite camera network structure analysis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Academic of Space Information, Space Engineering University, 101416 Beijing, China; Academic of Space Information, Space Engineering University, 101416 Beijing, China
2 Chinese People's Armed Police Forces Research institute, Beijing, China; Chinese People's Armed Police Forces Research institute, Beijing, China
3 Xi‘an Satellite Control Center, Xian, China; Xi‘an Satellite Control Center, Xian, China