It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Soil microbial communities remain active during much of the Arctic winter, despite deeply frozen soils. Overwinter microbial activity affects the global carbon (C) budget, nutrient cycling, and vegetation composition. Microbial respiration is highly temperature sensitive in frozen soils, as liquid water and solute availability decrease rapidly with declining temperature. Climate warming and changes in snowpack are leading to warmer Arctic winter soils. Warmer winter soils are thought to yield greater microbial respiration of available C, greater overwinter CO2 efflux and greater nutrient availability to plants at thaw. Using field and laboratory observations and experiments, we demonstrate that persistently warm winter soils can lead to labile C starvation and reduced microbial respiration, despite the high C content of most Arctic soils. If winter soils continue to warm, microbial C limitation will reduce expected CO2 emissions and alter soil nutrient cycling, if not countered by greater labile C inputs.
Soil microbial communities remain active throughout much of the Arctic winter, and Arctic winters are warming dramatically. Here, the authors show that persistently warm winter soils can lead to labile carbon starvation and reduced microbial respiration, despite the high carbon content of most Arctic soils.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 University of Alaska Anchorage, Environment and Natural Resources Institute, Anchorage, USA (GRID:grid.265894.4) (ISNI:0000 0001 0680 266X)
2 University of Toledo, Department of Environmental Sciences, Toledo, USA (GRID:grid.267337.4) (ISNI:0000 0001 2184 944X)