It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Although metastasis is the most common cause of cancer deaths, metastasis-intrinsic dependencies remain largely uncharacterized. We previously reported that metastatic pancreatic cancers were dependent on the glucose-metabolizing enzyme phosphogluconate dehydrogenase (PGD). Surprisingly, PGD catalysis was constitutively elevated without activating mutations, suggesting a non-genetic basis for enhanced activity. Here we report a metabolic adaptation that stably activates PGD to reprogram metastatic chromatin. High PGD catalysis prevents transcriptional up-regulation of thioredoxin-interacting protein (TXNIP), a gene that negatively regulates glucose import. This allows glucose consumption rates to rise in support of PGD, while simultaneously facilitating epigenetic reprogramming through a glucose-fueled histone hyperacetylation pathway. Restoring TXNIP normalizes glucose consumption, lowers PGD catalysis, reverses hyperacetylation, represses malignant transcripts, and impairs metastatic tumorigenesis. We propose that PGD-driven suppression of TXNIP allows pancreatic cancers to avidly consume glucose. This renders PGD constitutively activated and enables metaboloepigenetic selection of additional traits that increase fitness along glucose-replete metastatic routes.
Distant metastases from pancreatic cancer patients were previously reported by the authors to be dependent on the glucose-metabolizing enzyme phosphogluconate dehydrogenase (PGD). Here the authors report a novel metabolic adaptation that that stably activates PGD to reprogram metastatic chromatin.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details







1 Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, Nashville, USA (GRID:grid.412807.8) (ISNI:0000 0004 1936 9916)
2 Memorial Sloan Kettering Cancer Center, David M. Rubenstein Center for Pancreatic Cancer Research, New York, USA (GRID:grid.51462.34) (ISNI:0000 0001 2171 9952)
3 University of Pennsylvania Perelman School of Medicine, Department of Cancer Biology, Abramson Cancer Family Institute, Philadelphia, USA (GRID:grid.25879.31) (ISNI:0000 0004 1936 8972)
4 Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, Nashville, USA (GRID:grid.412807.8) (ISNI:0000 0004 1936 9916); Vanderbilt University Medical Center, Epithelial Biology Center; Vanderbilt-Ingram Cancer Center, Nashville, USA (GRID:grid.412807.8) (ISNI:0000 0004 1936 9916)