Full text

Turn on search term navigation

© 2020 Geeraert et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The role of white matter in reading has been established by diffusion tensor imaging (DTI), but DTI cannot identify specific microstructural features driving these relationships. Neurite orientation dispersion and density imaging (NODDI), inhomogeneous magnetization transfer (ihMT) and multicomponent driven equilibrium single-pulse observation of T1/T2 (mcDESPOT) can be used to link more specific aspects of white matter microstructure and reading due to their sensitivity to axonal packing and fiber coherence (NODDI) and myelin (ihMT and mcDESPOT). We applied principal component analysis (PCA) to combine DTI, NODDI, ihMT and mcDESPOT measures (10 in total), identify major features of white matter structure, and link these features to both reading and age. Analysis was performed for nine reading-related tracts in 46 neurotypical 6–16 year olds. We identified three principal components (PCs) which explained 79.5% of variance in our dataset. PC1 probed tissue complexity, PC2 described myelin and axonal packing, while PC3 was related to axonal diameter. Mixed effects regression models did not identify any significant relationships between principal components and reading skill. Bayes factor analysis revealed that the absence of relationships was not due to low power. Increasing PC1 in the left arcuate fasciculus with age suggest increases in tissue complexity, while increases of PC2 in the bilateral arcuate, inferior longitudinal, inferior fronto-occipital fasciculi, and splenium suggest increases in myelin and axonal packing with age. Multimodal white matter imaging and PCA provide microstructurally informative, powerful principal components which can be used by future studies of development and cognition. Our findings suggest major features of white matter undergo development during childhood and adolescence, but changes are not linked to reading during this period in our typically-developing sample.

Details

Title
Multimodal principal component analysis to identify major features of white matter structure and links to reading
Author
Geeraert, Bryce L; Chamberland, Maxime; Lebel, R Marc; Lebel, Catherine
First page
e0233244
Section
Research Article
Publication year
2020
Publication date
Aug 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2434371351
Copyright
© 2020 Geeraert et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.