Full text

Turn on search term navigation

Copyright © 2020 Huayuan Ma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

In this study, the authors introduced energy entropy as a reference feature into the field of blast vibration recognition classification and achieved good results. On the basis of the previous experimental database, 4 kinds of typical vibration signals were selected to form the sample group (building collapse vibration, surface rock blast vibration, underground tunnel blast vibration, and natural gas pipeline explosion vibration). EEMD (ensemble empirical mode decomposition) algorithm was used to calculate the energy entropy of each signal. Taking eigenvector composed of CEE (components of energy entropy) as input, multiclassification SVM algorithm was used for training and prediction. Prediction accuracy was more than 80%. Compared with BP (backpropagation) neural network algorithm, SVM (support vector machine) algorithm has higher training efficiency. The research results can be used in urban vibration monitoring, identify the nature of vibration source in time, and provide technical support for rapid response of emergency rescue.

Details

Title
Research on Identification Technology of Explosive Vibration Based on EEMD Energy Entropy and Multiclassification SVM
Author
Ma, Huayuan 1 ; Li, Xinghua 1   VIAFID ORCID Logo  ; Liu, Qiang 1   VIAFID ORCID Logo  ; Xie Xingbo 1 ; Chong, Ji 1 ; Zhao, Changxiao 1 

 Army Engineering University of PLA, Nanjing, China 
Editor
Jiawei Xiang
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
10709622
e-ISSN
18759203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2434416437
Copyright
Copyright © 2020 Huayuan Ma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/