Full Text

Turn on search term navigation

© 2020 Viennet et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Since 2015, Zika virus (ZIKV) outbreaks have occurred in the Americas and the Pacific involving mosquito-borne and sexual transmission. ZIKV has also emerged as a risk to global blood transfusion safety. Aedes aegypti, a mosquito well established in north and some parts of central and southern Queensland, Australia, transmits ZIKV. Aedes albopictus, another potential ZIKV vector, is a threat to mainland Australia. Since these conditions create the potential for local transmission in Australia and a possible uncertainty in the effectiveness of blood donor risk-mitigation programs, we investigated the possible impact of mosquito-borne and sexual transmission of ZIKV in Australia on local blood transfusion safety.

Methodology/Principal findings

We estimated ‘best-’ and ‘worst-’ case scenarios of monthly reproduction number (R0) for both transmission pathways of ZIKV from 1996–2015 in 11 urban or regional population centres, by varying epidemiological and entomological estimates. We then estimated the attack rate and subsequent number of infectious people to quantify the ZIKV transfusion-transmission risk using the European Up-Front Risk Assessment Tool. For all scenarios and with both vector species R0 was lower than one for ZIKV transmission. However, a higher risk of a sustained outbreak was estimated for Cairns, Rockhampton, Thursday Island, and theoretically in Darwin during the warmest months of the year. The yearly estimation of the risk of transmitting ZIKV infection by blood transfusion remained low through the study period for all locations, with the highest potential risk estimated in Darwin.

Conclusions/Significance

Given the increasing demand for plasma products in Australia, the current strategy of restricting donors returning from infectious disease outbreak regions to source plasma collection provides a simple and effective risk management approach. However, if local transmission was suspected in the main urban centres of Australia, potentially facilitated by the geographic range expansion of Ae. aegypti or Ae. albopictus, this mitigation strategy would need urgent review.

Details

Title
Estimation of mosquito-borne and sexual transmission of Zika virus in Australia: Risks to blood transfusion safety
Author
Viennet, Elvina; Frentiu, Francesca D; Williams, Craig R; Mincham, Gina; Jansen, Cassie C; Montgomery, Brian L; Flower, Robert L P; Faddy, Helen M
First page
e0008438
Section
Research Article
Publication year
2020
Publication date
Jul 2020
Publisher
Public Library of Science
ISSN
19352727
e-ISSN
19352735
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2434499956
Copyright
© 2020 Viennet et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.