It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The generation of synthesis gas (hydrogen and carbon monoxide mixture) from two global warming gases of carbon dioxide and methane via dry reforming is environmentally crucial and for the chemical industry as well. Herein, magnesium-promoted NiO supported on mesoporous zirconia, 5Ni/xMg–ZrO2 (x = 0, 3, 5, 7 wt%) were prepared by wet impregnation method and then were tested for syngas production via dry reforming of methane. The reaction temperature at 800 °C was found more catalytically active than that at 700 °C due to the endothermic feature of reaction which promotes efficient CH4 catalytic decomposition over Ni and Ni–Zr interface as confirmed by CH4–TSPR experiment. NiO–MgO solid solution interacted with ZrO2 support was found crucial and the reason for high CH4 and CO2 conversions. The highest catalyst stability of the 5Ni/3Mg–ZrO2 catalyst was explained by the ability of CO2 to partially oxidize the carbon deposit over the surface of the catalyst. A mole ratio of hydrogen to carbon monoxide near unity (H2/CO ~ 1) was obtained over 5Ni/ZrO2 and 5Ni/5Mg–ZrO2, implying the important role of basic sites. Our approach opens doors for designing cheap and stable dry reforming catalysts from two potent greenhouse gases which could be of great interest for many industrial applications, including syngas production and other value-added chemicals.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 King Saud University, Chemical Engineering Department, College of Engineering, Riyadh, Saudi Arabia (GRID:grid.56302.32) (ISNI:0000 0004 1773 5396)
2 Sankalchand Patel University, Visnagar, India (GRID:grid.56302.32)
3 King Abdulaziz City for Science and Technology, National Petrochemical Technology Center (NPTC), Materials Science Research Institute (MSRI), Riyadh, Saudi Arabia (GRID:grid.452562.2) (ISNI:0000 0000 8808 6435)
4 Queen’s University Belfast, School of Chemistry and Chemical Engineering, Belfast, UK (GRID:grid.4777.3) (ISNI:0000 0004 0374 7521)