Full Text

Turn on search term navigation

© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Results from the fully and biogeochemically coupled simulations in whichCO2 increases at a rate of 1 % yr-1 (1pctCO2) from its preindustrial value are analyzed to quantify the magnitude of carbon–concentration and carbon–climate feedback parameters which measure the response of ocean and terrestrial carbon pools to changes in atmosphericCO2 concentration and the resulting change in global climate, respectively. The results are based on 11 comprehensive Earth system models from the most recent (sixth) Coupled Model Intercomparison Project (CMIP6) and compared with eight models from the fifth CMIP (CMIP5). The strength of the carbon–concentration feedback is of comparable magnitudes over land (mean ± standard deviation = 0.97 ± 0.40 PgC ppm-1) and ocean (0.79 ± 0.07 PgC ppm-1), while the carbon–climate feedback over land (-45.1 ± 50.6 PgC C-1) is about 3 times larger than over ocean (-17.2 ± 5.0 PgC C-1). The strength of both feedbacks is an order of magnitude more uncertain over land than over ocean as has been seen in existing studies. These values and their spread from 11 CMIP6 models have not changed significantly compared to CMIP5 models. The absolute values of feedback parameters are lower for land with models that include a representation of nitrogen cycle. The transient climate response to cumulative emissions (TCRE) from the 11 CMIP6 models considered here is 1.77 ± 0.37 C EgC-1 and is similar to that found in CMIP5 models (1.63 ± 0.48 C EgC-1) but with somewhat reduced model spread. The expressions for feedback parameters based on the fully and biogeochemically coupled configurations of the 1pctCO2 simulation are simplified when the small temperature change in the biogeochemically coupled simulation is ignored. Decomposition of the terms of these simplified expressions for the feedback parameters is used to gain insight into the reasons for differing responses among ocean and land carbon cycle models.

Details

Title
Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models
Author
Arora, Vivek K 1 ; Katavouta, Anna 2   VIAFID ORCID Logo  ; Williams, Richard G 3   VIAFID ORCID Logo  ; Jones, Chris D 4   VIAFID ORCID Logo  ; Brovkin, Victor 5   VIAFID ORCID Logo  ; Friedlingstein, Pierre 6   VIAFID ORCID Logo  ; Schwinger, Jörg 7   VIAFID ORCID Logo  ; Bopp, Laurent 8 ; Boucher, Olivier 8   VIAFID ORCID Logo  ; Cadule, Patricia 8 ; Chamberlain, Matthew A 9 ; Christian, James R 1 ; Delire, Christine 10 ; Fisher, Rosie A 11 ; Hajima, Tomohiro 12 ; Ilyina, Tatiana 13   VIAFID ORCID Logo  ; Joetzjer, Emilie 10 ; Kawamiya, Michio 12 ; Koven, Charles D 14   VIAFID ORCID Logo  ; Krasting, John P 15 ; Law, Rachel M 16   VIAFID ORCID Logo  ; Lawrence, David M 17 ; Lenton, Andrew 9 ; Lindsay, Keith 17   VIAFID ORCID Logo  ; Pongratz, Julia 18 ; Raddatz, Thomas 13 ; Séférian, Roland 10   VIAFID ORCID Logo  ; Tachiiri, Kaoru 12 ; Tjiputra, Jerry F 7 ; Wiltshire, Andy 4 ; Wu, Tongwen 19   VIAFID ORCID Logo  ; Ziehn, Tilo 16   VIAFID ORCID Logo 

 Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria, BC, Canada 
 School of Environmental Sciences, University of Liverpool, Liverpool, UK; National Oceanography Centre, Liverpool, UK 
 School of Environmental Sciences, University of Liverpool, Liverpool, UK 
 Met Office Hadley Centre, Exeter, UK 
 Max Planck Institute for Meteorology, Bundesstraße 53, Hamburg, Germany; CEN, Universität Hamburg, Hamburg, Germany 
 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK 
 NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway 
 IPSL, CNRS, Sorbonne Université, Paris, France 
 CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia 
10  CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France 
11  Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, (CERFACS), Toulouse, France; Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA 
12  Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan 
13  Max Planck Institute for Meteorology, Bundesstraße 53, Hamburg, Germany 
14  Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA 
15  NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA 
16  CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia 
17  Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA 
18  Max Planck Institute for Meteorology, Bundesstraße 53, Hamburg, Germany; Ludwig Maximilian University, Department of Geography, Munich, Germany 
19  Beijing Climate Center, China Meteorological Administration, Beijing, China 
Pages
4173-4222
Publication year
2020
Publication date
2020
Publisher
Copernicus GmbH
ISSN
17264170
e-ISSN
17264189
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2434719140
Copyright
© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.