Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dental panoramic radiography (DPR) is a method commonly used in dentistry for patient diagnosis. This study presents a new technique that combines a regional convolutional neural network (RCNN), Single Shot Multibox Detector, and heuristic methods to detect and number the teeth and implants with only fixtures in a DPR image. This technology is highly significant in providing statistical information and personal identification based on DPR and separating the images of individual teeth, which serve as basic data for various DPR-based AI algorithms. As a result, the mAP(@IOU = 0.5) of the tooth, implant fixture, and crown detection using the RCNN algorithm were obtained at rates of 96.7%, 45.1%, and 60.9%, respectively. Further, the sensitivity, specificity, and accuracy of the tooth numbering algorithm using a convolutional neural network and heuristics were 84.2%, 75.5%, and 84.5%, respectively. Techniques to analyze DPR images, including implants and bridges, were developed, enabling the possibility of applying AI to orthodontic or implant DPR images of patients.

Details

Title
Automatic Tooth Detection and Numbering Using a Combination of a CNN and Heuristic Algorithm
Author
Kim, Changgyun; Kim, Donghyun; Jeong, HoGul; Suk-Ja Yoon; Youm, Sekyoung
First page
5624
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2434995122
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.