It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Sulfated polysaccharides from marine algae are known to possess antioxidative activities, however, their therapeutic role in metal-induced neurodegeneration has not been explored. In this study, the neuroprotective potentials of sulfated polysaccharides isolated from Ecklonia maxima (PKPM), Gelidium pristoides (PMNP), Ulva lactuca (PULV), Ulva rigida (PURL) and Gracilaria gracilis (PGCL) against Zn-induced neurodegeneration in rats’ hippocampal neuronal cells (HT-22) were assessed.
Methods
Cells were cultured and maintained at 37 °C. Control cells did not contain Zinc sulphate (ZnSO4) while other experimental groups contain Zn (50 μM) alone or in combination with sulfated polysaccharides (0.4 or 0.8 mg/mL). Cell viability was assessed using MTT assay while apoptotic assay was also determined using acridine orange and ethidium bromide staining technique. Oxidative stress parameters (superoxide dismutase and catalase activities, glutathione and nitric oxide levels) and acetylcholinesterase activity were also assessed in neuronal cells treated with or without Zn.
Results
Zn significantly reduced cell viability to about 50%. However, sulfated polysaccharides improved cell viability to about 95%. The sulfated polysaccharides also prevented late apoptosis and necrosis triggered by Zn. Furthermore, superoxide dismutase and catalase activities including glutathione content were significantly low in cells induced with Zn. Treatment with sulfated polysaccharides triggered a significant increase in antioxidant enzymes and glutathione content as well as a decrease in the activity of acetylcholinesterase in cells treated with Zn.
Conclusion
PKPM, PGCL, PURL, PULV and PMNP exhibit neuroprotective effects against neuronal damage induced by Zn and this may be attributed to inhibition of apoptosis, oxidative damage and acetylcholinesterase activity. These polysaccharides may be good therapeutic agents to protect neuronal cells against Zn - induced pathological processes associated with Alzheimer’s disease.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer