It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Statins are the most widely used drugs in elderly patients; the most common clinical application of statins is in aged hyperlipemia patients. There are few studies on the effects and mechanisms of statins on bone in elderly mice with hyperlipemia. The study is to examine the effects of atorvastatin on bone phenotypes and metabolism in aged apolipoprotein E-deficient (apoE–/–) mice, and the possible mechanisms involved in these changes.
Methods
Twenty-four 60-week-old apoE–/– mice were randomly allocated to two groups. Twelve mice were orally gavaged with atorvastatin (10 mg/kg body weight/day) for 12 weeks; the others served as the control group. Bone mass and skeletal microarchitecture were determined using micro-CT. Bone metabolism was assessed by serum analyses, qRT-PCR, and Western blot. Bone marrow-derived mesenchymal stem cells (BMSCs) from apoE–/– mice were differentiated into osteoblasts and treated with atorvastatin and silent information regulator 1 (Sirt1) inhibitor EX-527.
Results
The results showed that long-term administration of atorvastatin increases bone mass and improves bone microarchitecture in trabecular bone but not in cortical bone. Furthermore, the serum bone formation marker osteocalcin (OCN) was ameliorated by atorvastatin, whereas the bone resorption marker tartrate-resistant acid phosphatase 5b (Trap5b) did not appear obviously changes after the treatment of atorvastatin. The mRNA expression of Sirt1, runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and OCN in bone tissue were increased after atorvastatin administration. Western blot showed same trend in Sirt1 and Runx2. The in vitro study showed that when BMSCs from apoE–/– mice were pretreated with EX527, the higher expression of Runx2, ALP, and OCN activated by atorvastatin decreased significantly or showed no difference compared with the control. The protein expression of Runx2 showed same trend.
Conclusions
Accordingly, the current study validates the hypothesis that atorvastatin can increase bone mass and promote osteogenesis in aged apoE−/− mice by regulating the Sirt1–Runx2 axis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer