Abstract
Background
To investigate the potential value of volumetric iodine quantification using preoperative dual-energy computed tomography (DECT) for predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC).
Methods
This retrospective study included patients with single HCC treated through surgical resection who underwent preoperative DECT. Quantitative DECT features, including normalized iodine concentration (NIC) to the aorta and mixed-energy CT attenuation value in the arterial phase, were three-dimensionally measured for peritumoral and intratumoral regions: (i) layer-by-layer analysis for peritumoral layers (outer layers 1 and 2; numbered in close order from the tumor boundary) and intratumoral layers (inner layers 1 and 2) with 2-mm layer thickness and (ii) volume of interest (VOI)-based analysis with different volume coverage (tumor itself; VOIO1, tumor plus outer layer 1; VOIO2, tumor plus outer layers 1 and 2; VOII1, tumor minus inner layer 1; VOII2, tumor minus inner layers 1 and 2). In addition, qualitative CT features, including peritumoral enhancement and tumor margin, were assessed. Qualitative and quantitative CT features were compared between HCC patients with and without MVI. Diagnostic performance of DECT parameters of layers and VOIs was assessed using receiver operating characteristic curve analysis.
Results
A total of 36 patients (24 men, mean age 59.9 ± 8.5 years) with MVI (n = 14) and without MVI (n = 22) were included. HCCs with MVI showed significantly higher NICs of outer layer 1, outer layer 2, VOIO1, and VOIO2 than those without MVI (P = 0.01, 0.04, 0.02, 0.02, respectively). Among the NICs of layers and VOIs, the highest area under the curve was obtained in outer layer 1 (0.747). Qualitative features, including peritumoral enhancement and tumor margin, and the mean CT attenuation of each layer and each VOI were not significantly different between HCCs with and without MVI (both P > 0.05).
Conclusions
Volumetric iodine quantification of peritumoral and intratumoral regions in arterial phase using DECT may help predict the MVI of HCC.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer






