It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Nowadays, water has become one of the most important environmental issues for our ecosystem and is facing major challenges today. During the COVID-19 pandemic, the world has understood the need for good quality of water for sanitation and hygiene. Earth observing satellites plays a critical role in near-real-time detection and monitoring of land and water change and quality. This research presents a methodology for modeling and mapping water salinity in high spatial resolution. Data for modeling were measured on the five monitoring stations (Ayodhya, Basti, Birdghat, Paliakalan, and Turtipar) along the Ghagraha River Basin in India, during the period of 28 years (1985–2013). In this research, Electrical Conductivity (EC) as water salinity parameter modeled by means of Landsat 5 satellite imagery. All available Landsat 5 imagery were acquired on the same date as the ground measurement data was utilized for the modeling. Modeling was done based on linear, 2nd and 3rd polynomial multiple regression analysis. All statistical parameters for accuracy assessment show that 3rd degree polynomial performs better EC prediction capability than 2nd degree polynomial and linear regression. The 3rd degree polynomial multiple regression model RMSE, R2, MAE, p-value were 8.682, 0.993, 6.493, 0.008, respectively. The developed algorithm provides new knowledge that can be widely applied in various environmental research mapping and monitoring like water salinity. Also, this method allows rapid detection of water pollution, which has an important impact on human health, agriculture, and the environment.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, Kačićeva 26, Zagreb, Croatia; Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, Kačićeva 26, Zagreb, Croatia
2 K. Banerjee Centre of Atmospheric & Ocean Studies, IIDS, Nehru Science Centre, University of Allahabad, Allahabad-211002, Uttar Pradesh, India; K. Banerjee Centre of Atmospheric & Ocean Studies, IIDS, Nehru Science Centre, University of Allahabad, Allahabad-211002, Uttar Pradesh, India