Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

It is emphasized that a generalized relationship can be used to predict the ionic nitrogen concentration (i.e., sum of ammonium NH4+, nitrite NO2 and nitrate NO3) of the scrubbing liquid in a biotrickling filter treating ammonia emissions by measuring the electrical conductivity (EC) of the water directly. From measurements carried out on different water samples from six biotrickling filters in operation in pig husbandries, the generalized relationship is: Σ([NH4+]+[NO2]+[NO3]) g N/L = 0.22 EC mS/cm. This equation is valid provided the fresh water feeding the biotrickling filter has a low electrical conductivity (<1 mS cm−1). Moreover, since ammonium, nitrite and nitrate ions are the ultra-majority ions in the liquid phase, the balance between NH4+ and (NO2 + NO3) was confirmed, and consequently the relationship NH4+ = 0.11 EC mS/cm can also be applied to determine the ammonium concentration from the EC. As a result, EC measurement could be applied extensively to monitor operating biotrickling filters worldwide and used to determine ammonia mass transfer in real time, keeping in mind that the accuracy of the generalized relationship is ±20%.

Details

Title
Ammonia Removal Using Biotrickling Filters: Part A: Determination of the Ionic Nitrogen Concentration of Water Using Electrical Conductivity Measurement
Author
Dumont, Éric  VIAFID ORCID Logo  ; Lagadec, Solène; Guingand, Nadine; Loyon, Laurence; Amrane, Abdeltif; Couroussé, Valérie; Couvert, Annabelle
First page
49
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
23057084
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2436284626
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.