It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
To address the multi-modal spatio-temporal data efficient scheduling problem of the diverse and highly concurrent visualization applications in cloud-edge-terminal environment, this paper systematically studies the cloud-edge-terminal integrated scheduling model of multi-level visualization tasks of multi-modal spatio-temporal data. By accurately defining the hierarchical semantic mapping relationship between the diverse visual application requirements of different terminals and scheduling tasks, we propose a multi-level task-driven cloud-edge-terminal multi-granularity storage-computing-rendering resource collaborative scheduling method. Based on the workflow, the flexible allocation strategy of cloud-edge-terminal scheduling service chain that consider the characteristics of spatio-temporal task is constructed. Finally, we established a cloud-edge-terminal scheduling adaptive optimization mechanism based on the service quality evaluation model, and developed a prototype system. Experiments are conducted with the urban construction and construction management, the results show that the new method breaks through the bottleneck of traditional spatio-temporal data visualization scheduling, and it can provide theoretical and methodological support for the visualization and scheduling of spatio-temporal big data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Research Institute for Smart Cities & Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services, School of Architecture and Urban Planning, Shenzhen University, Shenzhen, P.R. China; Research Institute for Smart Cities & Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services, School of Architecture and Urban Planning, Shenzhen University, Shenzhen, P.R. China