Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With an ever-increasing resolution of optical remote-sensing images, how to extract information from these images efficiently and effectively has gradually become a challenging problem. As it is prohibitively expensive to label every object in these high-resolution images manually, there is only a small number of high-resolution images with detailed object labels available, highly insufficient for common machine learning-based object detection algorithms. Another challenge is the huge range of object sizes: it is difficult to locate large objects, such as buildings and small objects, such as vehicles, simultaneously. To tackle these problems, we propose a novel neural network based remote sensing object detector called full-coverage collaborative network (FCC-Net). The detector employs various tailored designs, such as hybrid dilated convolutions and multi-level pooling, to enhance multiscale feature extraction and improve its robustness in dealing with objects of different sizes. Moreover, by utilizing asynchronous iterative training alternating between strongly supervised and weakly supervised detectors, the proposed method only requires image-level ground truth labels for training. To evaluate the approach, we compare it against a few state-of-the-art techniques on two large-scale remote-sensing image benchmark sets. The experimental results show that FCC-Net significantly outperforms other weakly supervised methods in detection accuracy. Through a comprehensive ablation study, we also demonstrate the efficacy of the proposed dilated convolutions and multi-level pooling in increasing the scale invariance of an object detector.

Details

Title
FCC-Net: A Full-Coverage Collaborative Network for Weakly Supervised Remote Sensing Object Detection
Author
Chen, Suting 1 ; Shao, Dongwei 1 ; Xiao Shu 2 ; Zhang, Chuang 1 ; Wang, Jun 3 

 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China; [email protected] (D.S.); [email protected] (C.Z.) 
 Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada; [email protected] 
 School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing 210044, China; [email protected] 
First page
1356
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2437273243
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.