It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Artificial neural networks are notoriously power- and time-consuming when implemented on conventional von Neumann computing systems. Consequently, recent years have seen an emergence of research in machine learning hardware that strives to bring memory and computing closer together. A popular approach is to realise artificial neural networks in hardware by implementing their synaptic weights using memristive devices. However, various device- and system-level non-idealities usually prevent these physical implementations from achieving high inference accuracy. We suggest applying a well-known concept in computer science—committee machines—in the context of memristor-based neural networks. Using simulations and experimental data from three different types of memristive devices, we show that committee machines employing ensemble averaging can successfully increase inference accuracy in physically implemented neural networks that suffer from faulty devices, device-to-device variability, random telegraph noise and line resistance. Importantly, we demonstrate that the accuracy can be improved even without increasing the total number of memristors.
Designing reliable and energy-efficient memristor-based artificial neural networks remains a challenge. Here, the authors demonstrate a technology-agnostic approach, committee machines, which increases the inference accuracy of memristive neural networks that suffer from device variability, faulty devices, random telegraph noise and line resistance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 University College London, Roberts Building, Torrington Place, Department of Electronic and Electrical Engineering, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201)
2 Liverpool John Moores University, Liverpool, James Parsons Building, Byrom Street, Department of Electronics and Electrical Engineering, Liverpool, UK (GRID:grid.4425.7) (ISNI:0000 0004 0368 0654)
3 University of Massachusetts Amherst, 100 Natural Resources Road, Department of Electrical and Computer Engineering, Amherst, USA (GRID:grid.266683.f) (ISNI:0000 0001 2184 9220)