This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
1. Background
Endophthalmitis is one of the most serious complications after cataract surgery. Although rare, once it occurs, it is a complication that leads to poor visual prognosis [1]. According to the related literature [2], the incidence of endophthalmitis after cataract surgery is 0∼0.63%. There are several ways to prevent endophthalmitis, such as the use of povidone iodine, which can reduce the incidence of endophthalmitis [3]; antibiotic eye drops; subconjunctivals; anterior chamber injection; and antibacterial drug flushing [4–6]. In 2007, the European Association of Cataract and Refractive Surgeons (ESCRS) published a multicenter clinical trial that demonstrated the benefits of an anterior chamber injection of cefuroxime in preventing postoperative endophthalmitis [7]. In the recent years, the injection of antibacterial drugs in the anterior chamber has received increasing attention, and some related retrospective clinical studies and systematic reviews have been published. [8–10] However, with the increase in bacterial resistance, antibacterial drugs such as vancomycin and moxifloxacin have gradually begun to be used clinically to prevent postoperative endophthalmitis [9, 11]. However, cefuroxime is less sensitive to drug-resistant bacteria, and the use of vancomycin may cause hemorrhagic occlusive retinal vasculitis. Therefore, it is more appropriate to prevent postoperative endophthalmitis via injection with moxifloxacin. However, due to the influence of the baseline characteristics, follow-up time, and research institutions of the included populations, the conclusions among studies have not been uniform. For this reason, we conducted this meta-analysis to provide a reference for the rational use of antibiotics in the perioperative period.
2. Methods
This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the recommendations of the Cochrane Collaboration.
2.1. Search Strategy
A computer search using PubMed, Embase, the Cochrane Library, and the Clinical Trial database for the intra-anterior injection of moxifloxacin to prevent endophthalmitis after cataract surgery was performed; the search time limit was from the establishment of the database to April 2019. The search terms were moxifloxacin, moxifloxacin hydrochloride, ophthalmologic surgical procedures, cataract extraction, vitrectomies, keratoplasties, intraocular lens implantations, glaucoma procedures, strabotomies, retinal detachment repair, laser in situ keratomileusis, and laser-assisted subepithelial keratectomy.
2.2. Eligibility Criteria
(1) Study designs: RCTs, case-control studies, or cohort studies. (2) Types of participants: eligible for cataract surgery; no limitation regarding age, sex, and race; and absence of moxifloxacin allergy, traumatic cataract with perforation of the eye, cataract surgery combined with other operations (such as glaucoma filtration surgery, vitreoretinal surgery, or corneal surgery), eye or periocular infection, advanced glaucoma, and severe ocular surface disease. (3) Intervention: anterior chamber injection of moxifloxacin, frequency of administration, dose, and concentration. (4) Outcomes: the incidence of endophthalmitis, uncorrected visual acuity (UCVA), best corrected visual acuity (BCVA), intraocular pressure (IOP), corneal edema, corneal center thickness (CCT), and corneal endothelial cell density (ECD).
2.3. Exclusion Criteria
The exclusion criteria were as follows: (1) animal experiments; (2) repeated publications; (3) the literature for which data could not be extracted; and (4) abstracts, reviews, or conference literature.
2.4. Data Extraction
Two researchers used a three-step method to independently screen the literature, in case of disagreement. First, the topic and abstract were read, the irrelevant literature was excluded, and then, the full text of the remaining articles was read to determine whether they were ultimately included. If there were differences, they were discussed with a third party. The data extraction included the following: the first author and study time, age, sex, follow-up time, treatment plan, timing of administration, number of eyes included in the study, research type, and outcome indicators.
Regarding quality assessment of RCTs, the Cochrane risk of bias tool was used to perform a methodological quality assessment of RCTs. Assessment items include randomization, blinding, allocation concealment, data integrity, selective reporting bias, and other sources of bias. Each item was evaluated as “high,” “low,” or “unclear.” For non-RCTs, the literature quality was evaluated for case-control studies and cohort studies using the Newcastle–Ottawa Scale (NOS) for literature quality assessment.
2.5. Data Synthesis and Statistical Analysis
Statistical analysis was performed using RevMan5.3 software. The continuous variables used the standardized mean difference (SMD) and its 95% confidence interval (CI) as the statistical analysis value; the odds ratio (OR) and its 95% CI were selected for the two categorical variables. The heterogeneity between studies was investigated by the Q test and I2 test. If P was ≤0.1 or I2 was ≥50%, heterogeneity was considered significant. Sensitivity analysis was performed to determine whether the heterogeneity decreased after each study was excluded. If the heterogeneity was not reduced, a subgroup analysis was performed based on the clinical characteristics of these studies. In the sensitivity analysis and subgroup analysis, if the heterogeneity was not reduced, the random effects model was used and analyzed by the Mantel–Haenszel method. If there was no heterogeneity between studies, indicated by
3. Result
3.1. Search Results
A total of 2,686 articles were collected through relevant database searches and other resources, and 262 duplicates were deleted. After exclusion according to the topic, abstract, and intensive reading of the full text, 8 articles were finally included [11–18]. The literature was analyzed by Meta. The literature flow chart is shown in Figure 1.
[figure omitted; refer to PDF]3.2. Characteristics of Included Studies
This meta-analysis included 8 studies [11–18], with 123,819 eyes; 2 studies were RCTs [11, 17], 2 studies were case-control studies [12, 13], and 4 studies were cohort studies [14–16, 18]. Two studies [11, 14] were conducted in Brazil, 1 study [17] was conducted in the USA, 1 study [12]was conducted in Turkey, 1 study [13] was conducted in Canada, 1 study [18] was conducted in Colombia, and 2 studies [15, 16] were conducted in Japan. The follow-up time ranged from 2 weeks to 1 year. The basic characteristics of the literature are shown in Table 1.
Table 1
Characteristics of the included studies (n = 8).
Study | Site | Designs | The number of the eyes | Age | Treatment options | Follow-up | Outcomes | ||
Moxifloxacin | Control | Moxifloxacin | Control | ||||||
Melega et al. [11] | Brazil | RCT | 1818 | 1822 | 68.50 ± 9.72 | 68.49 ± 9.63 | 0.5% moxifloxacin | 6 w | ECD, IOP, CCT, and the incidence of endophthalmitis |
Lane et al. [17] | USA | RCT | 26 | 31 | 74 ± 9.3 | 74 ± 9.3 | 0.5% moxifloxacin | 3 m | UCVA, IOP, ECD, and CCT |
Cetinkaya et al. [12] | Turkey | Case-control study | 33 | 32 | 64.81 ± 11.61 | 65.43 ± 11.10 | 0.5% moxifloxacin | 1 y | BCVA, IOP, and corneal edema |
Rudnisky et al. [13] | Canada | Case-control study | 33039 | 42256 | NA | NA | 0.5% moxifloxacin | 6 w | The incidence of endophthalmitis |
Virgilio et al. [18] | Colombia | Cohort study | 1618 | 1056 | 67.2 ± 11.3 | 67.2 ± 11.3 | 0.5% moxifloxacin | 2 w | The incidence of endophthalmitis |
Matsuura et al. [15] | Japan | Cohort study | 69 | 69 | 71.9 ± 7.5 | 71.9 ± 7.5 | 0.5% moxifloxacin | 3 m | UCVA, BCVA, IOP, ECD, and CCT |
Matsuura et al., [16] | Japan | Cohort study | 18797 | 15958 | NA | NA | 0.1%, 0.3%, and 0.5% moxifloxacin | 1 m | The incidence of endophthalmitis |
Vieira et al. [14] | Brazil | Cohort study | 3680 | 3515 | 67.7 ± 9.03 | 68.1 ± 8.92 | 0.5% moxifloxacin | 1 m | The incidence of endophthalmitis |
Abbreviations: BCVA, best corrected visual acuity; UCVA, uncorrected visual acuity; IOP, intraocular pressure; ECD, corneal endothelial cell density; CCT, central corneal thickness; NA, data not available; y, year; m, month; w, week.
3.2.1. Methodological Quality Evaluation
Two studies [11, 17] were RCTs, and we used the Cochrane risk of bias tool to assess these studies; the RCT quality evaluation results are shown in Figures 2 and 3. For non-RCTs [12–16, 18], we used the Newcastle–Ottawa scoring system to evaluate the quality of the literature. The total scores were 1 to 3, 4 to 6, and 7 to 9, representing low-, medium-, and high-quality studies, respectively. Two articles [14, 18] were of high quality, and 4 [12, 13, 15, 16] articles were of medium quality. The results of the non-RCT literature quality evaluation are shown in Table 2.
[figure omitted; refer to PDF][figure omitted; refer to PDF]Table 2
Quality assessment of included observational studies based on the Newcastle–Ottawa scale.
Study | Crowd selectivity (4 points) | Comparability (2 points) | Exposure evaluation (3 points) | Total (9 points) |
Cetinkaya et al. [12] | 3 | 0 | 3 | 6 |
Rudnisky [13] | 3 | 0 | 3 | 6 |
Galvis et al. [18] | 3 | 1 | 3 | 7 |
Matsuura et al. [15] | 3 | 0 | 3 | 6 |
Matsuura et al. [16] | 3 | 0 | 3 | 6 |
Virgilio et al. [18] | 3 | 1 | 3 | 7 |
3.3. The Incidence of Endophthalmitis
We included 5 articles in this analysis [11, 13–15, 18]. There was no heterogeneity between the studies (I2 = 0%,
3.4. UCVA
Two articles [15, 17] were included that reported UCVA (log MAR). The meta-analysis showed no significant difference between the moxifloxacin injection and nonmoxafloxacin injection (SMD = −0.13, 95% CI (−0.62, 0.35),
3.5. BCVA
Two studies [12, 15] reported BCVA (log MAR). The meta-analysis showed no significant difference between the moxifloxacin injection and nonmoxafloxacin injection (SMD = −0.27, 95% CI (−1.28, 0.74),
3.6. IOP
Four studies [11, 12, 15, 17] reported IOP with no heterogeneity between studies (I2 = 0%,
3.7. Corneal Edema
Two studies [12, 17] reported corneal edema, with no heterogeneity between studies (I2 = 0%,
3.8. CCT
Three studies [11, 15, 17] reported CCT, and there was no heterogeneity between the studies (I2 = 0%,
3.9. ECD
Three studies [11, 15, 17] reported ECD, and there was no heterogeneity between the studies (I2 = 0%,
4. Discussion
The incidence of endophthalmitis after cataract surgery is 0.012∼0.053% in developed countries. [19] The incidence in large ophthalmology institutions in China is approximately 0.033% [20], and the incidence in small ophthalmology institutions has increased to 0.11% [21]. Because the incidence of endophthalmitis is extremely low, it is difficult to verify which preventive measures are the most effective through large RCTs, so most of the current research is observational in nature. Once endophthalmitis occurs, it can be life threatening. Perioperative use of antibiotic eye drops and preoperative conjunctival vesicle povidone iodine disinfection have been indicated to be the most effective measures to prevent endophthalmitis after cataract surgery. These measures have been considered the medical standards, and the anterior chamber injection of antibiotics’ safety and efficacy have also been popular research topics. However, the most reasonable use of antibiotics as a preventive measure during the perioperative period is still controversial. Different methods of administration, timing, and the course of treatment of anti-inflammatory drugs for postoperative endophthalmitis have been proposed by ophthalmologists, but there is no consensus. After the European ESCRS study, the anterior chamber injection of cefuroxime has been widely recognized, and with increasing clinical bacterial resistance, some medical institutions have begun to use effective broad-spectrum antibiotics, such as moxifloxacin and vancomycin. The anterior chamber injection of strong antibiotics has been used to prevent endophthalmitis after cataract surgery. In clinical applications, the preparation of cefuroxime in the pharmacy will increase the risk of infection and toxic anterior segment syndrome. The temporary preparation in the operating room is prone to dose error, while the direct injection of commercial cefuroxime is only available in Europe [22]. In addition, in a small number of cases, there is an allergic reaction associated with cefuroxime or transient macular edema caused by overdose [23, 24]. The use of vancomycin may cause hemorrhagic occlusive retinal vasculitis.
The results of this meta-analysis showed that the anterior chamber injection of moxifloxacin can prevent the incidence of endophthalmitis after cataract surgery (OR = 0.29, 95% CI (0.15, 0.56),
The study was limited by the following factors: (1) Because the incidence of endophthalmitis after cataract surgery is extremely low, most studies are observational; however, there is much evidence that the anterior chamber injection of moxifloxacin can prevent endophthalmitis. The incidence of posterior endophthalmitis, which is not used by clinicians, was not possible to assess mainly due to a lack of high-quality evidence from RCTs. (2) The follow-up time of some of the included studies was short, so we may have underestimated drug-induced adverse events. (3) Heterogeneity is unavoidable due to factors such as different drug administration schedules, different follow-up times, and differences in the population. (4) In addition to the significant difference in the incidence of endophthalmitis in this study, the difference in other indicators was not statistically significant, which may be due to the lack of included studies and the small sample size. Therefore, the advantages of the moxifloxacin injection in these areas have not been shown.
5. Conclusions
The results of this meta-analysis showed that compared with a nonmoxifloxacin injection, an anterior chamber injection of moxifloxacin was effective in preventing the incidence of endophthalmitis after cataract surgery, and the moxifloxacin injection exhibited in similar results as a nonmoxifloxacin injection in UCVA (log MAR), BCVA (log MAR), IOP, corneal edema, CCT, and ECD. Therefore, to obtain more meaningful results, a larger sample size RCT should be performed.
Acknowledgments
This study was supported by the Southwest Military Hospital Science and Technology Innovation Fund of the Third Military Medical University (SWHLKJ-CO1).
[1] N. K. George, M. W. Stewart, "The routine use of intracameral antibiotics to prevent endophthalmitis after cataract surgery: how good is the evidence?," Ophthalmology and Therapy, vol. 7 no. 2, pp. 233-245, DOI: 10.1007/s40123-018-0138-6, 2018.
[2] D. W. Bratzler, E. P. Dellinger, K. M. Olsen, "Clinical practice guidelines for antimicrobial prophylaxis in surgery," Surgical Infections, vol. 14 no. 1, pp. 73-156, DOI: 10.1089/sur.2013.9999, 2013.
[3] A. Şahin, Y. Çınar, "Intracameral povidone-iodine for endophthalmitis treatment," International Ophthalmology, vol. 38 no. 6, pp. 2269-2270, DOI: 10.1007/s10792-017-0801-2, 2018.
[4] R. E. Fintelmann, A. Naseri, "Prophylaxis of postoperative endophthalmitis following cataract surgery," Drugs, vol. 70 no. 11, pp. 1395-1409, DOI: 10.2165/11537950-000000000-00000, 2010.
[5] V. Jayesh, B. Sayan, "Role of topical, subconjunctival, intracameral, and irrigative antibiotics in cataract surgery," Current Opinion in Ophthalmology, vol. 24, pp. 60-65, DOI: 10.1097/icu.0b013e32835a93be, 2013.
[6] A. Grzybowski, P. Kuklo, J. Pieczynski, G. Beiko, "A review of preoperative manoeuvres for prophylaxis of endophthalmitis in intraocular surgery," Current Opinion in Ophthalmology, vol. 27 no. 1,DOI: 10.1097/icu.0000000000000216, 2016.
[7] C. Grasso, "Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multicenter study and identification of risk factors," Journal of Cataract & Refractive Surgery, vol. 33, pp. 978-988, DOI: 10.1016/j.jcrs.2007.02.032, 2007.
[8] J. Huang, X. Wang, X. Chen, "Perioperative antibiotics to prevent acute endophthalmitis after ophthalmic surgery: a systematic review and meta-analysis," PLoS One, vol. 11,DOI: 10.1371/journal.pone.0166141, 2016.
[9] R. C Bowen, A. X Zhou, S. Bondalapati, "Comparative analysis of the safety and efficacy of intracameral cefuroxime, moxifloxacin and vancomycin at the end of cataract surgery: a meta-analysis," The British Journal of Ophthalmology, vol. 102, pp. 1268-1276, DOI: 10.1136/bjophthalmol-2017-311051, 2018.
[10] L. Kessel, P. Flesner, J. Andresen, "Antibiotic prevention of postcataract endophthalmitis: a systematic review and meta-analysis," Acta Ophthalmologica, vol. 93, pp. 303-317, DOI: 10.1111/aos.12684, 2015.
[11] M. V. Melega, M. Alves, R. P. C. Lira, "Safety and efficacy of intracameral moxifloxacin for prevention of post-cataract endophthalmitis: randomized controlled clinical trial," Journal of Cataract & Refractive Surgery, vol. 45 no. 3, pp. 343-350, DOI: 10.1016/j.jcrs.2018.10.044, 2019.
[12] S. Cetinkaya, Y. F. Cetinkaya, N. O. Acir, "Application of intracameral moxifloxacin to prevent endophthalmitis in cataract surgery," International Eye Science, vol. 15, pp. 1680-1683, DOI: 10.1186/s12886-015-0058-3, 2015.
[13] C. J. Rudnisky, D. Wan, E. Weis, "Antibiotic choice for the prophylaxis of post-cataract extraction endophthalmitis," Ophthalmology, vol. 121 no. 4, pp. 835-841, DOI: 10.1016/j.ophtha.2013.08.046, 2014.
[14] I. V. Vieira, C. Boianovsky, T. J. Saraiva, "Safety and efficacy of intracameral moxifloxacin injection for prophylaxis of endophthalmitis after phacoemulsification," Arquivos brasileiros de oftalmologia, vol. 80, pp. 165-167, DOI: 10.5935/0004-2749.20170040, 2017.
[15] K. Matsuura, C. Suto, Y. Inoue, S.-i. Sasaki, S. Odawara, T. Gotou, "Safety of intracameral injection of moxifloxacin using total replacement technique (bag and chamber flushing)," Journal of Ocular Pharmacology and Therapeutics, vol. 30 no. 9, pp. 771-776, DOI: 10.1089/jop.2014.0029, 2014.
[16] K. Matsuura, T. Miyoshi, C. Suto, J. Akura, Y. Inoue, "Efficacy and safety of prophylactic intracameral moxifloxacin injection in Japan," Journal of Cataract & Refractive Surgery, vol. 39 no. 11, pp. 1702-1706, DOI: 10.1016/j.jcrs.2013.05.036, 2013.
[17] S. S. Lane, R. H. Osher, S. Masket, S. Belani, "Evaluation of the safety of prophylactic intracameral moxifloxacin in cataract surgery," Journal of Cataract & Refractive Surgery, vol. 34 no. 9, pp. 1451-1459, DOI: 10.1016/j.jcrs.2008.05.034, 2008.
[18] G. Virgilio, T. Alejandro, S. Mary Alejandra, "Cohort study of intracameral moxifloxacin in postoperative endophthalmitis prophylaxis," Ophthalmology and Eye Diseases, vol. 6,DOI: 10.4137/oed.s13102, 2014.
[19] C. Chiquet, S. Boisset, A. Pechinot, C. Creuzot-Garcher, F. Aptel, A. M. Bron, "Massilia timonae as cause of chronic endophthalmitis following cataract surgery," Journal of Cataract & Refractive Surgery, vol. 41 no. 8, pp. 1778-1780, DOI: 10.1016/j.jcrs.2015.07.016, 2015.
[20] Y. Ke, Z. Yanan, Z. Zhihong, "The incidence of postoperative endophthalmitis after cataract surgery in China: a multicenter investigation of 2006-2011," British Journal of Ophthalmology, vol. 97, pp. 1312-1317, DOI: 10.1136/bjophthalmol-2013-303282, 2013.
[21] Y. Zhu, X. Chen, P. Chen, "The occurrence rate of acute-onset postoperative endophthalmitis after cataract surgery in Chinese small- and medium-scale departments of ophthalmology," Scientific Reports, vol. 7,DOI: 10.1038/srep40776, 2017.
[22] A. Haripriya, D. F. Chang, "Intracameral antibiotics during cataract surgery: evidence and barriers," Current Opinion in Ophthalmology, vol. 29,DOI: 10.1097/icu.0000000000000445, 2018.
[23] E. Moisseiev, E. Levinger, "Anaphylactic reaction following intracameral cefuroxime injection during cataract surgery," Journal of Cataract & Refractive Surgery, vol. 39 no. 9, pp. 1432-1434, DOI: 10.1016/j.jcrs.2013.06.008, 2013.
[24] D. C. Wong, M. D. Waxman, L. J. Herrinton, N. H. Shorstein, "Transient macular edema after intracameral injection of a moderately elevated dose of cefuroxime during phacoemulsification surgery," JAMA Ophthalmology, vol. 133 no. 10, pp. 1194-1197, DOI: 10.1001/jamaophthalmol.2015.2421, 2015.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2020 Xiao-lei Wang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Purpose. A meta-analysis was performed to compare the efficacy of an anterior chamber injection of moxifloxacin in the prevention of endophthalmitis after cataract surgery. Methods. A computer-based search of PubMed, Embase, the Cochrane Library, and the Clinical Trial database for articles related to anterior intraventricular injection of moxifloxacin for the prevention of endophthalmitis after cataract surgery was performed through April 2019. Study selection, data exclusion, and quality assessment were performed by two independent observers. Statistical analysis for the meta-analysis was performed by RevMan5.3 software. Results. Eight studies were included, with a total of 123,819 eyes. The meta-analysis showed that an anterior chamber injection of moxifloxacin can prevent the incidence of endophthalmitis after cataract surgery (OR = 0.29, 95% CI (0.15, 0.56),
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer