It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
One of the major obstacles to successful chemotherapy is multi-drug resistance (MDR). A multi-drug resistant cancerous cell abnormally overexpresses membrane transporters that pump anticancer drugs out of the cell, resulting in low anticancer drug delivery efficiency. To overcome the limitation, many attempts have been performed to inhibit the abilities of efflux receptors chemically or genetically or to increase the delivery efficiency of anticancer drugs. However, the results have not yet been satisfactory. In this study, we developed nanoparticle-microbubble complexes (DOX-NPs/Ce6-MBs) by conjugating doxorubicin loaded human serum albumin nanoparticles (DOX-NPs) onto the surface of Chlorin e6 encapsulated microbubbles (Ce6-MBs) in order to maximize anticancer efficiency by overcoming MDR. Under the ultrasound irradiation, DOX-NPs and Ce6 encapsulating self-assembled liposomes or micelles were effectively delivered into the cells due to the sonoporation effect caused by the microbubble cavitation. At the same time, reactive oxygen (ROS) generated from intracellularly delivered Ce6 by laser irradiation arrested the activity of ABCG2 efflux receptor overexpressed in doxorubicin-resistant breast cancer cells (MCF-7/ADR), resulting in increased the chemotherapy efficacy. In addition, the total number of side population cells that exhibit the properties of cancer stem-like cells were also reduced by the combination of photodynamic therapy and chemotherapy. In conclusion, DOX-NPs/Ce6-MBs will provide a platform for simultaneously overcoming MDR and increasing drug delivery and therefore, treatment efficiency, under ultrasound irradiation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Sogang University, Department of Chemical & Biomolecular Engineering, Seoul, Republic of Korea (GRID:grid.263736.5) (ISNI:0000 0001 0286 5954)
2 Korea University, KU-KIST Graduate School of Converging Science and Technology, Seoul, Republic of Korea (GRID:grid.222754.4) (ISNI:0000 0001 0840 2678); Korea Institute of Science and Technology (KIST), Biomedical Research Institute, Seoul, Republic of Korea (GRID:grid.35541.36) (ISNI:0000000121053345)
3 Sogang University, Department of Chemical & Biomolecular Engineering, Seoul, Republic of Korea (GRID:grid.263736.5) (ISNI:0000 0001 0286 5954); Sogang University, Department of Biomedical Engineering, Seoul, Republic of Korea (GRID:grid.263736.5) (ISNI:0000 0001 0286 5954)