Full text

Turn on search term navigation

© 2020 Kropp et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To facilitate preclinical testing of T-cell receptors (TCRs) derived from tumor-reactive T-cell clones it is necessary to develop convenient and rapid cloning strategies for the generation of TCR expression constructs. Herein, we describe a pDONR™221 vector backbone allowing to generate Gateway™ compatible entry clones encoding optimized bicistronic αβTCR constructs. It harbors P2A-linked TCR constant regions and head-to-head-oriented recognition sites of the Type IIS restriction enzymes BsmBI and BsaI for seamless cloning of the TCRα and TCRβ V(D)J regions, respectively. Additional well-established TCR optimizations were incorporated to enhance TCR functionality. This included replacing of the human αβTCR constant regions with their codon-optimized murine counterparts for chimerization, addition of a second interchain disulfide bond and arrangement of the TCR chains in the order β-P2A-α. We exemplified the utility of our vector backbone by cloning and functional testing of three melanoma-reactive TCRs in primary human T cells.

Details

Title
A bicistronic vector backbone for rapid seamless cloning and chimerization of αβT-cell receptor sequences
Author
Kropp, Korbinian N; Schäufele, Tim J; Fatho, Martina; Volkmar, Michael; Conradi, Roland; Theobald, Matthias; Wölfel, Thomas; Wölfel, Catherine
First page
e0238875
Section
Research Article
Publication year
2020
Publication date
Sep 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2441247560
Copyright
© 2020 Kropp et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.