It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A cloudlet is a small-scale cloud datacenter deployed at the network edge to support mobile applications in proximity with low latency. While an individual cloudlet operates on moderate power, cloudlet clusters are well-suited candidates for emergency demand response (EDR) scenarios due to substantial electricity consumption and job elasticity: mobile workloads in the edge often exhibit elasticity in their execution. To efficiently carry out edge EDR via cloudlet cluster control, two fundamental problems need to be addressed: how to incentivize the participation of cloudlet clusters and how to schedule and allocate workloads in each cluster to satisfy EDR requirements. We propose a two-stage control scheme, consisting of (i) an auction mechanism to motivate clusters’ voluntary energy reduction and select participants with the minimum social cost and (ii) an online task scheduling algorithm for chosen clusters to dispatch workloads to guarantee target EDR power reduction. Using the primal-dual optimization theory, we prove that our control scheme is truthful, individually rational, runs in polynomial time, and achieves near-optimal performance. Large-scale simulation studies based on real-world data also confirm the efficiency and superiority of our scheme over state-of-the-art algorithms.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Wuhan University, Wuhan, China (GRID:grid.49470.3e) (ISNI:0000 0001 2331 6153)
2 Wuhan University, Wuhan, China (GRID:grid.49470.3e) (ISNI:0000 0001 2331 6153); Chinese University of Hong Kong, Hong Kong, China (GRID:grid.10784.3a) (ISNI:0000 0004 1937 0482)
3 Chinese University of Hong Kong, Hong Kong, China (GRID:grid.10784.3a) (ISNI:0000 0004 1937 0482)