It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We put forward the multipolar model which captures the physics behind linear and nonlinear response driven by high-quality (high-Q) supercavity modes in subwavelength particles. We show that the formation of such trapped states associated with bound states in the continuum (quasi-BIC) can be understood through multipolar transformations of coupled leaky modes. The quasi-BIC state appears with increasing the order of the dominating multipole, where dipolar losses are completely suppressed. The efficient optical coupling to this state in the AlGaAs nanodisk is implemented via azimuthally polarized beam illumination matching its multipolar origin. We establish a one-to-one correspondence between the standard phenomenological non-Hermitian coupled-mode theory and multipolar models. The derived multipolar composition of the generated second-harmonic radiation from the AlGaAs nanodisk is then validated with full-wave numerical simulations. Back-action of the second-harmonic radiation onto the fundamental frequency is taken into account in the coupled nonlinear model with pump depletion. A hybrid metal-dielectric nanoantenna is proposed to augment the conversion efficiency up to tens of per cent due to increasing quality factors of the involved resonant states. Our findings delineate novel promising strategies in the design of functional elements for nonlinear nanophotonics applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer