Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The problems of social networks analysis and calculation of the resulting opinions of network agents are considered. Algorithms for identifying strong subgroups and satellites as well as for calculating some quantitative characteristics of a network are implemented by the R programming language and tested on model examples. A new algorithm for calculating the resulting opinions of agents is developed by the R toolkit and tested on model examples. It is important that control actions that exert impact to the opinions should be applied exclusively to the members of strong subgroups (opinion leaders of a target audience), since they fully determine the stable resulting opinions of all network members. This approach allows saving control resources without significantly affecting its efficiency. Much attention is paid to the original models of optimal control (single subject) and conflict control (several competing subjects) under the assumption that the members of strong subgroups (opinion leaders) are already identified at the previous stage of network analysis. Models of optimal opinion control on networks are constructed and investigated by computer simulations using the author’s method of qualitatively representative scenarios. Differential game-based models of opinion control on networks with budget constraints in the form of equalities and inequalities are constructed and analytically investigated. All used notions, approaches and results of this paper are interpreted in terms of marketing problems.

Details

Title
Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing
Author
Agieva, M T; Korolev, A V  VIAFID ORCID Logo  ; Ougolnitsky, G A  VIAFID ORCID Logo 
First page
1529
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2441676227
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.