Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Metformin is a well-known AMPK (AMP-activated protein kinase) activator that suppresses cancer stem cells (CSCs) in some cancers. However, the mechanisms of the CSC-suppressing effects of metformin are not yet well understood. In this study, we investigated the CSC-suppressive effect of metformin via the mevalonate (MVA) pathway in colorectal cancer (CRC). Two colorectal cancer cell lines, HT29 and DLD-1 cells, were treated with metformin, mevalonate, or a combination of the two. We measured CSC populations by flow cytometric analysis (CD44+/CD133+) and by tumor spheroid growth. The expression of p-AMPK, mTORC1 (pS6), and key enzymes (HMGCR, FDPS, GGPS1, and SQLE) of the MVA pathway was also analyzed. We investigated the effects of metformin and/or mevalonate in xenograft mice using HT29 cells; immunohistochemical staining for CSC markers and key enzymes of the MVA pathway in tumor xenografts was performed. In both HT29 and DLD-1 cells, the CSC population was significantly decreased following treatment with metformin, AMPK activator (AICAR), HMG-CoA reductase inhibitor (simvastatin), or mTOR inhibitor (rapamycin), and was increased by mevalonate. The CSC-suppressing effect of these drugs was attenuated by mevalonate. The results of tumor spheroid growth matched those of the CSC population experiments. Metformin treatment increased p-AMPK and decreased mTOR (pS6) expression; these effects were reversed by addition of mevalonate. The expression of key MVA pathway enzymes was significantly increased in tumor spheroid culture, and by addition of mevalonate, and decreased upon treatment with metformin, AICAR, or rapamycin. In xenograft experiments, tumor growth and CSC populations were significantly reduced by metformin, and this inhibitory effect of metformin was abrogated by combined treatment with mevalonate. Furthermore, in the MVA pathway, CSC populations were reduced by inhibition of protein prenylation with a farnesyl transferase inhibitor (FTI-277) or a geranylgeranyl transferase inhibitor (GGTI-298), but not by inhibition of cholesterol synthesis with a squalene synthase inhibitor (YM-53601). In conclusion, the CSC-suppressive effect of metformin was associated with AMPK activation and repression of protein prenylation through MVA pathway suppression in colorectal cancer.

Details

Title
Metformin Suppresses Cancer Stem Cells through AMPK Activation and Inhibition of Protein Prenylation of the Mevalonate Pathway in Colorectal Cancer
Author
Seo, Yoojeong; Kim, Janghyun; Soo Jung Park; Park, Jae Jun; Cheon, Jae Hee; Won Ho Kim; Tae Il Kim  VIAFID ORCID Logo 
First page
2554
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2442017938
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.