Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Traditional capacitive electrocardiogram (cECG) electrodes suffer from limited patient comfort, difficulty of disinfection and low signal-to-noise ratio in addition to the challenge of integrating them in wearables. A novel hybrid flexible cECG electrode was developed that offers high versatility in the integration method, is well suited for large-scale manufacturing, is easy to disinfect in clinical settings and exhibits better performance over a comparable rigid contactless electrode. The novel flexible electrode meets the frequency requirement for clinically important QRS complex detection (0.67–5 Hz) and its performance is improved over rigid contactless electrode across all measured metrics as it maintains lower cut-off frequency, higher source capacitance and higher pass-band gain when characterized over a wide spectrum of patient morphologies. The results presented in this article suggest that the novel flexible electrode could be used in a medical device for cECG acquisition and medical diagnosis. The novel design proves also to be less sensitive to motion than a reference rigid electrode. We therefore anticipate it can represent an important step towards improving the repeatability of cECG methods while requiring less post-processing. This would help making cECG a viable method for remote cardiac health monitoring.

Details

Title
Contactless Capacitive Electrocardiography Using Hybrid Flexible Printed Electrodes
Author
Lessard-Tremblay, Mathieu; Weeks, Joshua; Morelli, Laura; Cowan, Glenn; Gagnon, Ghyslain  VIAFID ORCID Logo  ; Zednik, Ricardo J  VIAFID ORCID Logo 
First page
5156
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2442518904
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.