It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In order to meet the visualization requirements of the cavitation field distribution in the ultrasonic cavitation reactor, a method based on the numerical simulation of the amplitude of sound pressure is proposed. In order to verify that the amplitude of sound pressure plays a decisive role in cavitation effect, the dynamic equation of a single cavitation bubble is established, and the influence law of the amplitude of sound pressure on cavitation motion is analyzed in principle; then, the three-dimensional model of the self-built drum type ultrasonic cavitation reactor is built using the finite element software COMSOL Multiphysics, and the amplitude distribution of the sound pressure at the longitudinal section is obtained when the liquid height was 25 mm, 60 mm and 90 mm. Through the comparison of aluminum foil corrosion experiments, it shows that the numerical simulation method based on the amplitude of sound pressure can accurately characterize the distribution area of ultrasonic cavitation field, which overcomes the disadvantage of time-consuming and labor-consuming in the traditional measurement method of cavitation field distribution, and lays a foundation for the study of the distribution law of ultrasonic cavitation field.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer