Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A mathematical model, consisting of a set of differential equations, for the simulation of the alumina splat solidification on steel substrate is presented. The network simulation method is used to solve the problem, which provides the temperatures and the cooling rate in the splat and substrate with a high temporal and spatial resolution for different values of the preheated substrate temperature. The results of this calculation provide important information for the design of ceramic coatings. The model design is explained in depth and simulated in open source software. As expected, the temperature evolutions in several points of the splat, an important variable to know the type of phases and the effect of the manufacturing parameters on this process, coincide with the experimental results. The model is also checked by another experimental test with tin and a bigger splat, which enables the temperature to be measured during solidification. It is worth highlighting the study of the cooling rate, a fundamental parameter to determine the phase, whether amorphous, gamma or alpha. Furthermore, a sensitive study of the mesh was included in order to optimize the computational time.

Details

Title
Modelling of Alumina Splat Solidification on Preheated Steel Substrate Using the Network Simulation Method
Author
Noelia González Morales  VIAFID ORCID Logo  ; Sánchez-Pérez, Juan Francisco  VIAFID ORCID Logo  ; Jose Andres Moreno Nicolás; Killinger, Andreas
First page
1568
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2442705646
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.