Full text

Turn on search term navigation

© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between -7.8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between -6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.

Details

Title
ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
Author
Seroussi, Hélène 1   VIAFID ORCID Logo  ; Nowicki, Sophie 2   VIAFID ORCID Logo  ; Payne, Antony J 3   VIAFID ORCID Logo  ; Goelzer, Heiko 4   VIAFID ORCID Logo  ; Lipscomb, William H 5 ; Abe-Ouchi, Ayako 6   VIAFID ORCID Logo  ; Agosta, Cécile 7   VIAFID ORCID Logo  ; Albrecht, Torsten 8   VIAFID ORCID Logo  ; Asay-Davis, Xylar 9   VIAFID ORCID Logo  ; Barthel, Alice 9   VIAFID ORCID Logo  ; Calov, Reinhard 8 ; Cullather, Richard 2 ; Dumas, Christophe 7 ; Galton-Fenzi, Benjamin K 10   VIAFID ORCID Logo  ; Gladstone, Rupert 11   VIAFID ORCID Logo  ; Golledge, Nicholas R 12   VIAFID ORCID Logo  ; Gregory, Jonathan M 13   VIAFID ORCID Logo  ; Greve, Ralf 14   VIAFID ORCID Logo  ; Hattermann, Tore 15   VIAFID ORCID Logo  ; Hoffman, Matthew J 9   VIAFID ORCID Logo  ; Humbert, Angelika 16   VIAFID ORCID Logo  ; Huybrechts, Philippe 17   VIAFID ORCID Logo  ; Jourdain, Nicolas C 18   VIAFID ORCID Logo  ; Kleiner, Thomas 19   VIAFID ORCID Logo  ; Larour, Eric 1 ; Leguy, Gunter R 5   VIAFID ORCID Logo  ; Lowry, Daniel P 20   VIAFID ORCID Logo  ; Little, Chistopher M 21 ; Morlighem, Mathieu 22   VIAFID ORCID Logo  ; Pattyn, Frank 23   VIAFID ORCID Logo  ; Tyler Pelle 22   VIAFID ORCID Logo  ; Price, Stephen F 9   VIAFID ORCID Logo  ; Quiquet, Aurélien 7   VIAFID ORCID Logo  ; Reese, Ronja 8   VIAFID ORCID Logo  ; Schlegel, Nicole-Jeanne 1   VIAFID ORCID Logo  ; Shepherd, Andrew 24 ; Simon, Erika 2 ; Smith, Robin S 25   VIAFID ORCID Logo  ; Straneo, Fiammetta 26   VIAFID ORCID Logo  ; Sun, Sainan 23   VIAFID ORCID Logo  ; Trusel, Luke D 27 ; Jonas Van Breedam 17   VIAFID ORCID Logo  ; Roderik S W van de Wal 28 ; Winkelmann, Ricarda 29   VIAFID ORCID Logo  ; Chen, Zhao 30   VIAFID ORCID Logo  ; Zhang, Tong 9 ; Zwinger, Thomas 31   VIAFID ORCID Logo 

 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 
 NASA Goddard Space Flight Center, Greenbelt, MD, USA 
 University of Bristol, Bristol, UK 
 Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands; Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium 
 Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA 
 University of Tokyo, Tokyo, Japan 
 Laboratoire des sciences du climat et de l'environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France 
 Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 601203, 14412 Potsdam, Germany 
 Theoretical Division, Los Alamos National Laboratory, Los Alamos,, NM, USA 
10  Australian Antarctic Division, Kingston, Tasmania, Australia 
11  Arctic Centre, University of Lapland, Rovaniemi, Finland 
12  Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand 
13  National Centre for Atmospheric Science, University of Reading, Reading, UK; Met Office Hadley Centre, Exeter, UK 
14  Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan; Arctic Research Center, Hokkaido University, Sapporo, Japan 
15  Norwegian Polar Institute, Tromsø, Norway; Energy and Climate Group, Department of Physics and Technology, The Arctic University – University of Tromsø, Tromsø, Norway 
16  Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; Department of Geoscience, University of Bremen, Klagenfurter Straße 2-4, 28334 Bremen, Germany 
17  Earth System Science and Departement Geografie, Vrije Universiteit Brussel, Brussels, Belgium 
18  Univ. Grenoble Alpes/CNRS/IRD/G-INP, Institut des Géosciences de l'Environnement, Grenoble, France 
19  Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany 
20  GNS Science, Lower Hutt, New Zealand 
21  Atmospheric and Environmental Research, Inc., Lexington, MA, USA 
22  Department of Earth System Science, University of California Irvine, Irvine, CA, USA 
23  Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium 
24  Centre for Polar Observation and Modelling, University of Leeds, Leeds, UK 
25  National Centre for Atmospheric Science, University of Reading, Reading, UK 
26  Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA 
27  Department of Geography, Pennsylvania State University, University Park, PA, USA 
28  Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands; Geosciences, Physical Geography, Utrecht University, Utrecht, the Netherlands 
29  Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 601203, 14412 Potsdam, Germany; University of Potsdam, Institute of Physics and Astronomy, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany 
30  Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia 
31  CSC-IT Center for Science, Espoo, Finland 
Pages
3033-3070
Publication year
2020
Publication date
2020
Publisher
Copernicus GmbH
ISSN
19940424
e-ISSN
19940416
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2443418520
Copyright
© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.