Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Understanding the genetic modifiers of neurodegenerative diseases can provide insight into the mechanisms underlying these disorders. Here, we examine the relationship between the motor neuron disease spinal muscular atrophy (SMA), which is caused by reduced levels of the survival of motor neuron (SMN) protein, and the actin-bundling protein Plastin 3 (PLS3). Increased PLS3 levels suppress symptoms in a subset of SMA patients and ameliorate defects in SMA disease models, but the functional connection between PLS3 and SMN is poorly understood.

Results

We provide immunohistochemical and biochemical evidence for large protein complexes localized in vertebrate motor neuron processes that contain PLS3, SMN, and members of the hnRNP F/H family of proteins. Using a Caenorhabditis elegans (C. elegans) SMA model, we determine that overexpression of PLS3 or loss of the C. elegans hnRNP F/H ortholog SYM-2 enhances endocytic function and ameliorates neuromuscular defects caused by decreased SMN-1 levels. Furthermore, either increasing PLS3 or decreasing SYM-2 levels suppresses defects in a C. elegans ALS model.

Conclusions

We propose that hnRNP F/H act in the same protein complex as PLS3 and SMN and that the function of this complex is critical for endocytic pathways, suggesting that hnRNP F/H proteins could be potential targets for therapy development.

Details

Title
Genetic modifiers ameliorate endocytic and neuromuscular defects in a model of spinal muscular atrophy
Author
Walsh, Melissa B; Janzen, Eva; Wingrove, Emily; Hosseinibarkooie, Seyyedmohsen; Natalia Rodriguez Muela; Davidow, Lance; Dimitriadi, Maria; Norabuena, Erika M; Rubin, Lee L; Wirth, Brunhilde; Hart, Anne C  VIAFID ORCID Logo 
Pages
1-19
Section
Research article
Publication year
2020
Publication date
2020
Publisher
BioMed Central
e-ISSN
17417007
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2443994835
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.