It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
When two nonorthogonal resonances are coupled to the same radiation channel, avoided crossing arises and a bound state in the continuum (BIC) appears with appropriate conditions in parametric space. This paper presents numerical and analytical results on the properties of avoided crossing and BIC due to the coupled guided-mode resonances in one-dimensional (1D) leaky-mode photonic lattices with slab geometry. In symmetric photonic lattices with up-down mirror symmetry, Friedrich–Wintgen BICs with infinite lifetime are accompanied by avoided crossings due to the coupling between two guided modes with the same transverse parity. In asymmetric photonic lattices with broken up-down mirror symmetry, quasi-BICs with finite lifetime appear with avoided crossings because radiating waves from different modes cannot be completely eliminated. We also show that unidirectional-BICs are accompanied by avoided crossings due to guided-mode resonances with different transverse parities in asymmetric photonic lattices. The Q factor of a unidirectional-BIC is finite, but its radiation power in the upward or downward direction is significantly smaller than that in the opposite direction. Our results may be helpful in engineering BICs and avoided crossings in diverse photonic systems that support leaky modes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer






