It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A recent surge of interest in surface-enhanced Raman scattering (SERS) has stimulated the search for new systems that can be utilized to fabricate high-performance optical devices. However, the two-dimensional design of the vast majority of SERS-based assemblies has significantly hindered their real-life applicability, motivating the development of three-dimensional volumetric materials. Here, we report selective SERS observed in a volumetric Bi2O3-Ag eutectic composite obtained by the micro-pulling-down method utilizing directional solidification of eutectics. The enhancement of the Raman signal originates from the localized surface plasmon resonance, LSPR, resulting from silver nanoparticles embedded in the composite. The plasmonic origin of the enhancement is confirmed by characteristic features, such as (i) an enhancement magnitude >103, (ii) the correspondence between the Raman bands’ intensity upon excitation by different wavelengths and the localized surface plasmon resonance (LSPR) intensity, and (iii) the occurrence of overtones, which are absent in the as-grown material that does not exhibit LSPR. The examined Bi2O3-Ag eutectic-based composite is obtained by directional solidification using a simple crystal growth technique. It is the first case of a bulk SERS-active material fabricated by crystal growth techniques, which opens new perspectives towards scalable three-dimensional optical elements with tunable properties based on Raman scattering.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer