It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Introducing deep learning approach to medical images has rendered a large amount of un-decoded information into usage in clinical research. But mostly, it has been focusing on the performance of the prediction modeling for disease-related entity, but not on the clinical implication of the feature itself. Here we analyzed liver imaging features of abdominal CT images collected from 2019 patients with stage I – III colorectal cancer (CRC) using convolutional neural network (CNN) to elucidate its clinical implication in oncological perspectives.
Results
CNN generated imaging features from the liver parenchyma. Dimension reduction was done for the features by principal component analysis. We designed multiple prediction models for 5-year metachronous liver metastasis (5YLM) using combinations of clinical variables (age, sex, T stage, N stage) and top principal components (PCs), with logistic regression classification. The model using “1st PC (PC1) + clinical information” had the highest performance (mean AUC = 0.747) to predict 5YLM, compared to the model with clinical features alone (mean AUC = 0.709). The PC1 was independently associated with 5YLM in multivariate analysis (beta = − 3.831, P < 0.001). For the 5-year mortality rate, PC1 did not contribute to an improvement to the model with clinical features alone. For the PC1, Kaplan-Meier plots showed a significant difference between PC1 low vs. high group. The 5YLM-free survival of low PC1 was 89.6% and the high PC1 was 95.9%. In addition, PC1 had a significant correlation with sex, body mass index, alcohol consumption, and fatty liver status.
Conclusion
The imaging features combined with clinical information improved the performance compared to the standardized prediction model using only clinical information. The liver imaging features generated by CNN may have the potential to predict liver metastasis. These results suggest that even though there were no liver metastasis during the primary colectomy, the features of liver imaging can impose characteristics that could be predictive for metachronous liver metastasis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer