It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Parkinson’s disease (PD) and essential tremor (ET) are movement disorders that can have similar clinical characteristics including tremor and gait difficulty. These disorders can be misdiagnosed leading to delay in appropriate treatment. The aim of the study was to determine whether balance and gait variables obtained with wearable inertial motion sensors can be utilized to differentiate between PD and ET using machine learning. Additionally, we compared classification performances of several machine learning models.
Methods
This retrospective study included balance and gait variables collected during the instrumented stand and walk test from people with PD (n = 524) and with ET (n = 43). Performance of several machine learning techniques including neural networks, support vector machine, k-nearest neighbor, decision tree, random forest, and gradient boosting, were compared with a dummy model or logistic regression using F1-scores.
Results
Machine learning models classified PD and ET based on balance and gait characteristics better than the dummy model (F1-score = 0.48) or logistic regression (F1-score = 0.53). The highest F1-score was 0.61 of neural network, followed by 0.59 of gradient boosting, 0.56 of random forest, 0.55 of support vector machine, 0.53 of decision tree, and 0.49 of k-nearest neighbor.
Conclusions
This study demonstrated the utility of machine learning models to classify different movement disorders based on balance and gait characteristics collected from wearable sensors. Future studies using a well-balanced data set are needed to confirm the potential clinical utility of machine learning models to discern between PD and ET.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer