This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Metabolomics, or metabonomics, is one of the developing “-omics” technologies. As a part of the rapidly growing field of postgenomics, which also includes transcriptomics and proteomics, much of the research in metabolomics is aimed at simultaneously characterizing the large numbers of metabolites in biological systems to a pathophysiological intervention or genetic modification. The main methods of metabonomic research are high-throughput chemical analysis and multivariate data analysis. Nuclear magnetic resonance (NMR) and mass spectrometry (MS) fall under the category of high-throughput metabolite profile analysis methods and are the most efficient and widely used [1, 2]. NMR technology allows for simplicity in sample preparation, which enables maintenance of the original nature of the sample. However, there are some drawbacks; until now, NMR has been more suitable for situations that require repeated testing and often results in images with relatively low resolution and sensitivity. On the other hand, MS technology is more sensitive than NMR, enabling metabolites to be detected at picomolar (pmol) concentration levels. Multistage mass spectrometry can be used to accurately obtain the molecular weight of compounds and has been recently combined with ultra-high-performance liquid chromatography (UHPLC), which results in a high level of resolution and sensitivity, and with the development of combined technologies, scientists have combined UHPLC with quadrupole time-of-flight (QTOF) mass spectrometry. This combination, called the UHPLC-QTOF/MS analysis technology, has evolved into the development of sensitive, accurately, and highly reproducible analytical platforms that allow for the determination of hundreds of metabolites in parallel [3–5]. UHPLC-QTOF/MS can be used to analyze lower concentrations of differential metabolites in samples more quickly and comprehensively, making it easier to find potential biomarkers.
The field of metabolomics can also be further divided based on different research purposes into untargeted and targeted metabolomics [6]. Targeted metabolomics focuses on the analysis of specific clusters of metabolites related to certain metabolic pathways, whereas untargeted metabolomics, also known as discovery metabolomics, is a global analysis of different metabolomics between the control group and the experimental group. Metabolomic-based technologies can be used to identify specific biomarkers or conduct metabolic profiling of complex diseases at development and prognosis. Metabolomics has become a promising tool for the research of etiology, biomarker discovery, early diagnosis, and treatment response biomarkers for neuropsychiatric disorders [7]. Previously, metabolomic strategies have been widely used to characterize human metabolic status in the field of central nervous system disorders such as Parkinson’s, Alzheimer’s, and Huntington’s diseases, as well as various neuroinflammatory disorders [8–10]. Metabolomics has also gradually been applied towards the research area of neurodevelopmental disorders including bipolar disorder, autism spectrum disorder (ASD), Rett syndrome (RTT), and schizophrenia [11–14].
Autism spectrum disorders are some of the most common human neuropsychiatric diseases, causing behavioral difficulties and impairment in social interaction. It is estimated that autism affects 1–1.5% of the world population [15]. Diagnosis of autism generally relies on symptom checklists that primarily focus on the person’s thoughts and behaviors, thus lacking in precision and repetition. Due to the neurodiversity and heterogeneity of their phenotypic effects, the underlying molecular mechanisms and pathways are still ambiguous. Identification of metabolic biomarkers would assist in their early detection and diagnosis and be beneficial to mechanism studies. To date, numerous studies have utilized metabolomics to profile autism spectrum disorder but have not generated applicable genetic biomarkers for clinical use [16, 17].
In this study, UHPLC-QTOF/MS technology was used to optimize the detection process, chromatography, and mass spectrometry conditions for high-throughput untargeted metabolomic profiling of autism spectrum disorder. A total of 40 autism patients and 40 normal healthy subjects as controls were enrolled, and urine samples were analyzed using the UHPLC-QTOF/MS platform to identify potential metabolite markers associated with autism.
2. Methods
2.1. Participant Recruitment and Study Design
Clinical autism samples were collected from hospitalized patients in Shenzhen Kangning Hospital, which approved of the study. Urine samples from a total of 40 autism patients and 40 healthy controls were included for UHPLC-QTOF/MS analysis. They were split into two sets: a training set of 60 samples (30 autism and 30 controls) and an independent validation set of 10 ASD and 10 controls.
The selection criteria for autistic participants were set as follows: (i) ASD diagnostic criteria according to the American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR [7]), (ii) children 3-12 years of age, and (iii) exclusion of children with hearing impairments and other neurodevelopmental disorders.
We also excluded individuals with other neurodevelopmental disorders: Rett syndrome, Asperger’s syndrome, Fragile X syndrome, disintegrating psychosis (CDD), and other extensive developmental disorders (PDD-NOS). Individuals with major metabolic or genetic diseases were also excluded. Standardized scales, including the Autism Diagnostic Observation Schedule (ADOS), Autism Diagnostic Interview-Revised (ADI-R) and Childhood Autism Rating Scale (CARS), and Autism Behavior Checklist (ABC), were used to assess the severity of each symptom. We also record the clinical symptoms of autistic patients in detail.
The selection criteria for children in the healthy control group were set as follows: (i) children 3-12 years of age and (ii) healthy children with typical development, with exclusion of participants with mental retardation, language impairment, and mental development disorder. Normal healthy controls were confirmed using the normal control criteria of the SCID (Structured Clinical Interview for DSM Diagnosis).
2.2. Sample Collection
Each participant was given a standardized dietary recipe, and no other drugs were taken within 2 weeks before collection of samples, which were obtained from each individual at around 8 am after overnight fasting. Immediately after centrifugation, each resulting urine supernatant was aliquoted in a 1.5 mL sterile Eppendorf tube and frozen for storage at -80°C before use.
2.3. Chemicals and Reagents
LC-MS grade water, methanol, and acetonitrile were purchased from CNW Technologies (GmbH, Dusseldorf, Germany). High-performance liquid chromatography- (HPLC-) grade ethanol and acetone were obtained from Merck & Co. (Kenilworth, NJ, USA). Ammonium acetate and ammonium hydroxide of LC-MS reagent grade were bought from Sigma-Aldrich (Saint Louis, MO, USA). 2-Chloro-L-phenylalanine was purchased from Shanghai Hengbai Biotech (Shanghai, China).
2.4. Metabolite Extraction
Urine samples were thawed on ice at 4°C. 100 μL of sample was taken and placed in 1.5 mL centrifuge tubes before being reconstituted in 300 μL of methanol containing 10 μL internal standard substances. After being vortexed for 3 min and ultrasound treated for 10 min (incubated in ice water), the mixed solution was incubated for 1 h at -20°C to precipitate proteins and then centrifuged at 14,000 rpm at 4°C for 15 min. The supernatant was transferred to a fresh 2 mL LC/MS glass vial, and 20 μL of liquid was taken from each sample to be pooled as QC samples, with 200 μL of supernatant taken for UHPLC-QTOF-MS analysis.
2.5. LC-MS/MS Analysis
MS files acquired from the UHPLC system were performed using Agilent 1290 Infinity II with a UPLC BEH Amide column (1.7 μm,
2.6. Data Processing
ProteoWizard software was used to convert the mass spectrum into mzXML. The preprocessing results generated a data matrix that consisted of the retention time (RT), mass-to-charge ratio (
2.7. Multivariate Data Analysis
Clustering of QCs was assessed by principal component analysis (PCA) according to total peak area data in order to compare analytical variability with biological variability. The preprocessed data sets were used as input to SIMCA P+ version 14.0 (Umetrics, Umea, Sweden). The training sets of these data sets were tested individually in order to find the best orthogonal partial least squares discriminant analysis (OPLS-DA) model. Model development was performed in order to select a minimum set of predictive metabolites (
3. Results
3.1. Demographic and Clinical Characteristics of Participants
80 subjects (40 autism and 40 healthy controls) were recruited. Information was collected on each participant, including age, sex, medication, and age at sampling. Diagnosis of ASD was performed using the Autism Behavior Checklist (ABC) and Childhood Autism Rating Scale (CARS). CARS scores were used to measure the behavior characteristic of autism, which consists of 15 domains: listening response, visual response, smell and touch response, nonverbal communication, relating to people, emotional response, imitation, body use, object use, fear or nervousness, verbal communication, activity level, level and reliability of intellectual response, adaptation to change, taste, and general impressions. An individual with a CARS score above 30 is considered to have autism. The enrolled subjects were separated into a training set for discovery biomarkers and an independent test set for validation. The characteristics and group separation of study participants are summarized in Table 1.
Table 1
Descriptive and clinical characteristics of children with autism and healthy control children (TD).
Training set | Validation set | |||
Participants | Autism ( | Control ( | Autism ( | Control ( |
Gender (male : female) | 19 : 11 | 16 : 14 | 6 : 4 | 7 : 3 |
Age ( | ||||
ABC total score ( | — | — | ||
CARS total score ( | — | — |
ABC: Autism Behavior Checklist; CARS: Childhood Autism Rating Scale; SD: standard deviation.
3.2. Quality Control
Chromatography-mass spectrometry is a very complicated and precise system. During the sample detection process, the results may be affected by objective factors such as humidity, temperature, vibration, and aging of the circuit board, which may lead to signal floating and varying degrees of response. Thus, there is a need for a series of quality control methods for data processing. In theory, quality control (QC) samples are all the same, but there will be errors in the process of substance extraction, detection, and analysis, resulting in some differences between QC samples. Thus, we injected ten QCs to equilibrate the chromatographic system before each analytical batch. The QCs and autism or control samples were analyzed in order to compare the analytical and biological variabilities for each batch. As reflected in the PCA scatter plots, QC samples were densely distributed. From Figures 1(a) and 1(b), we can observe the clustering of QC samples closed to the origin of the PCA scatter plot, which indicates that biological variability exceeds analytical variability, pointing to a very high quality of experimental data. This QC step validates all batch series.
[figures omitted; refer to PDF]
3.3. Urine Metabolic Profile
The score plot of orthogonal projection to latent structures (OPLS) discriminates urine profiles of autism patients and normal controls. In Figure 2(a), the
[figures omitted; refer to PDF]
We then validated the OPLS-DA model through permutation tests (number of times
3.4. Predictive Potential of Biomarkers
Differential metabolites that participate in discrimination of the children with autism and healthy controls were selected based on the variable importance in projection (VIP) values and a statistical test for difference (
Table 2
Differential metabolites for autism and their metabolic pathways.
Metabolite | Ion ( | Rt | VIP | Fold change (autism/control) | Pathway | |
Nicotinamide | 164.0780128 | 314.4465 | 2.04 | 0.03 | 1.84 | Nicotinate and nicotinamide metabolism |
Phosphorylcholine | 184.0770546 | 491.186 | 2.01 | 0.02 | 2.34 | Phosphorylcholine metabolism |
Gly-Glu | 205.0852678 | 401.053 | 1.74 | 0.03 | 1.47 | Amino acid metabolism |
Acetylcarnitine | 226.1098247 | 202.887 | 1.85 | 0.04 | 2.60 | Acetyl-CoA synthase |
Ala-Thr | 235.0684618 | 234.5185 | 2.20 | 0.02 | 1.42 | Amino acid metabolism |
Thr-Asp | 235.0948054 | 405.1215 | 1.59 | 0.03 | 1.39 | Amino acid metabolism |
His-Pro | 235.1210422 | 143.171 | 1.58 | 0.05 | 1.78 | Amino acid metabolism |
Bethanechol cation | 238.0473387 | 384.975 | 2.39 | 0.01 | 1.91 | Unknown |
Pro-Ser | 241.0583313 | 314.282 | 1.24 | 0.04 | 0.66 | Amino acid metabolism |
D-Neopterin | 254.08997 | 324.551 | 1.60 | 0.05 | 1.71 | Tryptophan kynurenine pathway |
7,8-Dihydroneopterin | 256.1055818 | 332.338 | 1.58 | 0.04 | 1.84 | Tryptophan kynurenine pathway |
5-Aminopentanoic acid | 257.1511912 | 194.7525 | 1.27 | 0.05 | 2.94 | Catabolism of lysine |
Lys-Pro | 261.1903229 | 222.931 | 1.84 | 0.02 | 1.54 | Amino acid metabolism |
Anthranilic acid (vitamin L1) | 275.1038159 | 282.982 | 1.68 | 0.02 | 2.18 | Tryptophan kynurenine pathway |
1-Methyladenosine | 282.120322 | 132.113 | 1.93 | 0.03 | 1.50 | Modified nucleosides |
3 | 283.0969971 | 35.517 | 1.79 | 0.02 | 1.55 | Modified nucleosides |
Val-Met | 290.1604362 | 308.2965 | 2.30 | 0.00 | 1.81 | Amino acid metabolism |
S-Methyl-5 | 298.0970956 | 100.968 | 1.35 | 0.04 | 1.66 | Unknown |
N-Acetylaspartylglutamate (NAAG) | 305.097723 | 412.4945 | 1.70 | 0.02 | 1.42 | Neurotransmitter |
1-Naphthol | 306.1546719 | 392.709 | 1.96 | 0.00 | 1.86 | Naphthalene metabolites |
N-Acetylneuraminic acid | 310.1131559 | 359.178 | 2.01 | 0.02 | 1.83 | Sialic acid pathway |
Deoxyinosine | 313.1065711 | 35.563 | 2.11 | 0.01 | 1.74 | Purine metabolism |
Met-Gln | 319.1497604 | 390.399 | 1.95 | 0.01 | 1.39 | Amino acid metabolism |
Behenic acid | 358.365623 | 38.136 | 1.56 | 0.04 | 1.48 | Lipid metabolism |
[figures omitted; refer to PDF]
4. Discussion
Autism usually initiates early in childhood and persists throughout the rest of an individual’s life. Autism affects an estimated 13.1 to 29.3 per 1,000 children and is the fastest-growing developmental disability worldwide, rendering it a major public health challenge [20]. Currently, diagnosis of autism is mainly based on clinical interviewing and behavior assessment of characteristics such as impairments in social communication and social interaction, restricted interests, and repetitive behaviors. The lack of objective diagnostic indicators severely restricts the ability to conduct early and rapid diagnosis [21]. Obtaining specific biomarkers through metabolomic research is an important avenue for establishing early screening and diagnostic methods. In recent years, a large number of metabolomic studies have found that autism is accompanied by disturbances in multiple metabolic pathways such as intestinal microbial metabolism, energy metabolism, and oxidative stress [22–24]; thus, metabonomic profiling may be a promising and effective means of identifying variations in metabolite with clinical significance. Additionally, urine from living individuals is a preferable and more accessible biofluid for such screening owing to its noninvasive method of collection and availability in large quantities.
Despite the advancement of ongoing research in the field of metabolomic modeling of autism disorders, there are still many limitations to keep in mind, with the most prominent limitation being detection sensitivity. The most commonly used method of 1H NMR spectrometry has a relatively low sensitivity and a limited detection dynamic range, making 1H NMR not particularly suitable for analyzing a large number of samples with low metabolite concentrations. With the relatively recent development of time-of-flight (TOF) mass spectrometry and ultra-fast liquid chromatography (UFLC), which have high selectivity and sensitivity, we can now perform quantitative and qualitative analysis of multiple metabolites on samples at the same time [25, 26]. These methods are currently being used as the preferred technology for all aspects of metabolomic research, but to date, there has not been a comprehensive global evaluation of small-molecule metabolites using UHPLC-QTOF/MS in the context of ASD [27].
The first set called the training set was used for a metabolomic discovery analysis of urine to identify metabolites that could be used in discrimination of autism cases and controls. The newly identified metabolites were further validated in an independent validation set of autism cases and controls. In line with this design, we identified four metabolites that allow for good discrimination between the autistic and control subjects, suggesting that these four metabolites could yield the highest predictive power for further diagnostic applications. Each of the potential biomarkers, nicotinamide, anthranilic acid (vitamin L1), D-neopterin, and 7,8-dihydroneopterin, performed well in regard to the area under the curve in analysis (>0.75), and we found that combining a panel of the four parameters can improve diagnostic performance and shows more sensitivity and specificity for discrimination of autism patients from controls. The specificity of the combination of these biochemical biomarkers also helps distinguish probands with autism from the external test set, suggesting that our model has a good predictive ability. However, the specificity of the combination of these biochemical biomarkers regarding other neurodevelopmental disorders should still be evaluated in future studies.
Disruption of the tryptophan kynurenine pathway has been observed in previous research, suggesting that the kynurenine (KYN) pathway is activated in various neuroinflammatory states of ASD [28]. Altered kynurenine pathway metabolites serve as a new potential biological diagnostic marker in a Ptchd1 KO mouse model of human autism spectrum disorders [29]. In our research, we have identified three metabolites, anthranilic acid, 8-dihydroneopterin, and neopterin, which are associated with the tryptophan kynurenine pathway. 8-Dihydroneopterin has been used as an indicator of immune system activation and was the most dazzling inflammatory marker over other traditional biomarkers [30–32]. On the other hand, neopterin is an oxidized form of 7,8-dihydroneopterin, a product of γ-interferon-mediated upregulation of GTP cyclohydrolase I (GTPCH1) [33]. Neopterin has been extensively used as a clinical marker of immune activation during inflammation in a wide range of conditions and stressors [34, 35]. Increased inflammation and oxidative stress have been reported in autistic children [36], and it is hypothesized that increased production of inflammatory markers 8-dihydroneopterin and neopterin could play a role in the pathophysiology of autism. Anthranilic acid acts as an intermediate in the biosynthesis of tryptophan, serving as a potential biomarker for other neurodevelopment disorders and as a target for treatment of schizophrenia [37, 38]. Thus, anthranilic acid metabolites are potential diagnostic biomarkers for neurodevelopmental disorders, and the involvement of pathways related to the tryptophan kynurenine pathway suggests that metabolites play an important role in the effects of psychostimulants. The translational perspective, which integrates the study of metabolomics, can shed light on the possible molecular and biological sources of autism.
Recently, a large number of metabolomic studies have revealed that ASD is accompanied with intestinal microbial metabolism, energy metabolism, oxidative stress, and other metabolic pathway disorders, but the fluctuations of some metabolic products involving these pathways have shown controversial results. The unified standardization of the software and databases and different instruments need to be established. Our method could achieve higher resolution, greater sensitivity, and rapid separation, and the UHPLC-QTOF/MS system provides a better opportunity to reveal the most discriminant metabolites for identification of ASD children.
5. Conclusion
Our exploratory study has identified several of the metabolites that may be involved in associated biological processes relating to autism spectrum disorder. Our findings serve to shed light on the biomarkers and metabolic mechanism involved in neurodevelopmental disorders such as autism through untargeted UHPLC-QTOF/MS-based urinary metabolomic analysis.
Ethical Approval
The study was approved by the ethical committee of Shenzhen Kangning Hospital (Approval NO: 2019-K014-01-2).
Consent
All subjects were recruited at Shenzhen Kangning Hospital. Parents or guardian of each participant gave informed consent before inclusion in this study (NO: JCYJ20180306170922163).
Authors’ Contributions
The experiments were conceived and designed by Y.L. and J.L. The experiments were performed by X.K., Z.X., Y.Z., and Y.X., and L.L. and Z.W. contributed to the metabolomic analysis. Y.L. wrote the paper. P.Y. gave discussions and critically revised it.
Acknowledgments
This study was supported by the Science and Technology Innovation Committee of Shenzhen (project JCYJ20160429185235132 and JCYJ20180306170922163), Shenzhen Health Committee project (project ZXJ2018035 and SZSM201612079), and Shenzhen Double Chain Grant [2018]256.
[1] S. Moco, J. Vervoort, S. Moco, R. J. Bino, R. C. H. De Vos, R. Bino, "Metabolomics technologies and metabolite identification," TrAC Trends in Analytical Chemistry, vol. 26 no. 9, pp. 855-866, DOI: 10.1016/j.trac.2007.08.003, 2007.
[2] A. Zhang, H. Sun, P. Wang, Y. Han, X. Wang, "Modern analytical techniques in metabolomics analysis," Analyst, vol. 137 no. 2, pp. 293-300, DOI: 10.1039/C1AN15605E, 2012.
[3] X. Qiao, W. Song, X.-h. Lin, Q. Wang, T. Bo, D.-a. Guo, J. Liu, M. Ye, "Rapid chemical analysis of bear bile: 5 minute separation and quantitation of bile acids using UHPLC–qTOF-MS," Analytical Methods, vol. 6 no. 2, pp. 596-601, DOI: 10.1039/C3AY41605D, 2014.
[4] F. Miao, C. S. Fei, "UHPLC–MS-based metabolomics analysis on mice," Hepatology, vol. 36, pp. S74-S83, 2002.
[5] D. Saigusa, Y. Okamura, I. N. Motoike, Y. Katoh, Y. Kurosawa, R. Saijyo, S. Koshiba, J. Yasuda, H. Motohashi, J. Sugawara, "Establishment of protocols for global metabolomics by LC-MS for biomarker discovery," PLoS One, vol. 11 no. 8,DOI: 10.1371/journal.pone.0160555, 2016.
[6] K. Bingol, "Recent advances in targeted and untargeted metabolomics by NMR and MS/NMR methods," High-throughput, vol. 7 no. 2,DOI: 10.3390/ht7020009, 2018.
[7] S. Sethi, E. Brietzke, "Omics-based biomarkers: application of metabolomics in neuropsychiatric disorders," International Journal of Neuropsychopharmacology, vol. 19 no. 3,DOI: 10.1093/ijnp/pyv096, 2016.
[8] R. González-Domínguez, A. Sayago, Á. Fernández-Recamales, "Direct infusion mass spectrometry for metabolomic phenotyping of diseases," Bioanalysis, vol. 9 no. 1, pp. 131-148, DOI: 10.4155/bio-2016-0202, 2017.
[9] C. Gonzalez-Riano, A. Garcia, C. Barbas, "Metabolomics studies in brain tissue: a review," Journal of Pharmaceutical and Biomedical Analysis, vol. 130, pp. 141-168, DOI: 10.1016/j.jpba.2016.07.008, 2016.
[10] C. Domange, A. Paris, H. Schroeder, N. Priymenko, "Power of a Metabonomic Approach to Investigate an Unknown Nervous Disease," Neurodegenerative Diseases—Processes, Prevention, Protection and Monitoring, 2011.
[11] P. R. West, D. G. Amaral, P. Bais, A. M. Smith, L. A. Egnash, M. E. Ross, J. A. Palmer, B. R. Fontaine, K. R. Conard, B. A. Corbett, G. G. Cezar, E. L. R. Donley, R. E. Burrier, "Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children," PLoS One, vol. 9 no. 11,DOI: 10.1371/journal.pone.0112445, 2014.
[12] E. Holmes, T. M. Tsang, S. J. Tabrizi, "The application of NMR-based metabonomics in neurological disorders," NeuroRx, vol. 3 no. 3, pp. 358-372, DOI: 10.1016/j.nurx.2006.05.004, 2006.
[13] H. Wang, S. Liang, M. Wang, J. Gao, C. Sun, J. Wang, W. Xia, S. Wu, S. J. Sumner, F. Zhang, C. Sun, L. Wu, "Potential serum biomarkers from a metabolomics study of autism," Journal of psychiatry & neuroscience: JPN, vol. 41 no. 1, pp. 27-37, DOI: 10.1503/jpn.140009, 2016.
[14] D. Ma, P. C. Guest, S. Bahn, "Metabonomic studies of schizophrenia and psychotropic medications: focus on alterations in CNS energy homeostasis," Bioanalysis, vol. 1 no. 9, pp. 1615-1626, DOI: 10.4155/bio.09.144, 2009.
[15] C. Lord, M. Elsabbagh, G. Baird, J. Veenstra-Vanderweele, "Autism spectrum disorder," The Lancet, vol. 392 no. 10146, pp. 508-520, DOI: 10.1016/S0140-6736(18)31129-2, 2018.
[16] F. Gevi, L. Zolla, S. Gabriele, A. M. Persico, "Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism," Molecular Autism, vol. 7 no. 1,DOI: 10.1186/s13229-016-0109-5, 2016.
[17] M. Lussu, A. Noto, A. Masili, A. C. Rinaldi, A. Dessì, M. De Angelis, A. De Giacomo, V. Fanos, L. Atzori, R. Francavilla, "The urinary 1 H-NMR metabolomics profile of an Italian autistic children population and their unaffected siblings," Autism Research, vol. 10 no. 6, pp. 1058-1066, DOI: 10.1002/aur.1748, 2017.
[18] H.-P. Chan, B. Sahiner, M. A. Helvie, N. Petrick, M. A. Roubidoux, T. E. Wilson, D. D. Adler, C. Paramagul, J. S. Newman, S. Sanjay-Gopal, "Improvement of radiologists' characterization of mammographic masses by using computer-aided diagnosis: an ROC study," Radiology, vol. 212 no. 3, pp. 817-827, DOI: 10.1148/radiology.212.3.r99au47817, 1999.
[19] K. Hajian-Tilaki, "Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation," Caspian Journal of Internal Medicine, vol. 4, 2013.
[20] J. Baio, L. Wiggins, D. L. Christensen, M. J. Maenner, J. Daniels, Z. Warren, M. Kurzius-Spencer, W. Zahorodny, C. Robinson, Rosenberg, T. White, M. S. Durkin, P. Imm, L. Nikolaou, M. Yeargin-Allsopp, L. C. Lee, R. Harrington, M. Lopez, R. T. Fitzgerald, A. Hewitt, S. Pettygrove, J. N. Constantino, A. Vehorn, J. Shenouda, J. Hall-Lande, K. van, Naarden, Braun, N. F. Dowling, "Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014," MMWR Surveillance Summaries, vol. 67 no. 6,DOI: 10.15585/mmwr.ss6706a1, 2018.
[21] J. L. Matson, J. Wilkins, M. Gonzalez, "Early identification and diagnosis in autism spectrum disorders in young children and infants: how early is too early?," Research in Autism Spectrum Disorders, vol. 2 no. 1, pp. 75-84, DOI: 10.1016/j.rasd.2007.03.002, 2008.
[22] D. A. Rossignol, R. E. Frye, "Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis," Molecular Psychiatry, vol. 17 no. 3, pp. 290-314, DOI: 10.1038/mp.2010.136, 2012.
[23] T. A. Clayton, "Metabolic differences underlying two distinct rat urinary phenotypes, a suggested role for gut microbial metabolism of phenylalanine and a possible connection to autism," FEBS Letters, vol. 586 no. 7, pp. 956-961, DOI: 10.1016/j.febslet.2012.01.049, 2012.
[24] S. J. James, S. Melnyk, S. Jernigan, M. A. Cleves, C. H. Halsted, D. H. Wong, P. Cutler, K. Bock, M. Boris, J. J. Bradstreet, "Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism," American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol. 141, pp. 947-956, 2006.
[25] W. Yang, J. Zhang, C. Yao, S. Qiu, M. Chen, H. Pan, X. Shi, W. Wu, D. Guo, "Method development and application of offline two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry-fast data directed analysis for comprehensive characterization of the saponins from Xueshuantong injection," Journal of Pharmaceutical and Biomedical Analysis, vol. 128, pp. 322-332, DOI: 10.1016/j.jpba.2016.05.035, 2016.
[26] Y. Gagnebin, D. Tonoli, P. Lescuyer, B. Ponte, S. de Seigneux, P.-Y. Martin, J. Schappler, J. Boccard, S. Rudaz, "Metabolomic analysis of urine samples by UHPLC-QTOF-MS: impact of normalization strategies," Analytica Chimica Acta, vol. 955, pp. 27-35, DOI: 10.1016/j.aca.2016.12.029, 2017.
[27] F. Zhang, Z. Jia, P. Gao, H. Kong, X. Li, X. Lu, Y. Wu, G. Xu, "Metabonomics study of urine and plasma in depression and excess fatigue rats by ultra fast liquid chromatography coupled with ion trap-time of flight mass spectrometry," Molecular BioSystems, vol. 6 no. 5, pp. 852-861, DOI: 10.1039/b914751a, 2010.
[28] V. Bryn, R. Verkerk, O. H. Skjeldal, O. D. Saugstad, H. Ormstad, "Kynurenine pathway in autism spectrum disorders in children," Neuropsychobiology, vol. 76 no. 2, pp. 82-88, DOI: 10.1159/000488157, 2018.
[29] Y. Murakami, Y. Imamura, K. Saito, D. Sakai, J. Motoyama, "Altered kynurenine pathway metabolites in a mouse model of human attention-deficit hyperactivity/autism spectrum disorders: a potential new biological diagnostic marker," Scientific Reports, vol. 9 no. 1,DOI: 10.1038/s41598-019-49781-y, 2019.
[30] A. Lindsay, J. T. Costello, "Realising the potential of urine and saliva as diagnostic tools in sport and exercise medicine," Sports Medicine, vol. 47 no. 1, pp. 11-31, DOI: 10.1007/s40279-016-0558-1, 2017.
[31] J. W. Hol, R. J. Stolker, M. Klimek, D. L. Stronks, D. Fekkes, "The tryptophan kynurenine pathway, neopterin and IL-6 during vulvectomy and abdominal hysterectomy," Journal of Biomedical Science, vol. 21 no. 1,DOI: 10.1186/s12929-014-0102-2, 2014.
[32] C. Speth, G. Stöckl, D. Fuchs, B. Wirleitner, B. Widner, R. Würzner, I. Mohsenipour, C. Lass-Flörl, M. P. Dierich, "Inflammation marker 7, 8-dihydroneopterin induces apoptosis of neurons and glial cells: a potential contribution to neurodegenerative processes," Immunobiology, vol. 202 no. 5, pp. 460-476, DOI: 10.1016/S0171-2985(00)80104-7, 2000.
[33] G. SCHOEDON, J. TROPPMAIR, A. FONTANA, C. HUBER, H. C. CURTIUS, A. NIEDERWIESER, "Biosynthesis and metabolism of pterins in peripheral blood mononuclear cells and leukemia lines of man and mouse," European Journal of Biochemistry, vol. 166 no. 2, pp. 303-310, DOI: 10.1111/j.1432-1033.1987.tb13515.x, 1987.
[34] S. Gieseg, G. Baxter-Parker, A. Lindsay, "Neopterin, inflammation, and oxidative stress: what could we be missing?," Antioxidants, vol. 7 no. 7,DOI: 10.3390/antiox7070080, 2018.
[35] C. Murr, B. Widner, B. Wirleitner, D. Fuchs, "Neopterin as a marker for immune system activation," Current Drug Metabolism, vol. 3 no. 2, pp. 175-187, DOI: 10.2174/1389200024605082, 2002.
[36] J. Croonenberghs, E. Bosmans, D. Deboutte, G. Kenis, M. Maes, "Activation of the inflammatory response system in autism," Neuropsychobiology, vol. 45 no. 1,DOI: 10.1159/000048665, 2002.
[37] G. Oxenkrug, M. van der Hart, J. Roeser, P. Summergrad, "Anthranilic acid: a potential biomarker and treatment target for schizophrenia," Annals of Psychiatry and Mental Health, vol. 4 no. 2, 2016.
[38] H. Rydon, "Anthranilic acid as an intermediate in the biosynthesis of tryptophan by Bact. typhosum," British Journal of Experimental Pathology, vol. 29 no. 1, pp. 48-57, 1948.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2020 Yujie Liang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
Autism spectrum disorder (ASD) is a clinical spectrum of neurodevelopment disorder characterized by deficits in social communication and social interaction along with repetitive/stereotyped behaviors. The current diagnosis for autism relies entirely on clinical evaluation and has many limitations. In this study, we aim to elucidate the potential mechanism behind autism and establish a series of potential biomarkers for diagnosis. Here, we established an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry- (UHPLC-QTOF/MS-) based metabonomic approach to discriminate the metabolic modifications between the cohort of autism patients and the healthy subjects. UHPLC-QTOF/MS analysis revealed that 24 of the identified potential biomarkers were primarily involved in amino acid or lipid metabolism and the tryptophan kynurenine pathway. The combination of nicotinamide, anthranilic acid, D-neopterin, and 7,8-dihydroneopterin allows for discrimination between ASD patients and controls, which were validated in an independent autism case-control cohort. The results indicated that UHPLC-QTOF/MS-based metabolomics is capable of rapidly profiling autism metabolites and is a promising technique for the discovery of potential biomarkers related to autism.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare & Shenzhen Institute of Mental Health, Shenzhen, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
2 Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare & Shenzhen Institute of Mental Health, Shenzhen, China; Affiliated Shenzhen Clinical College of Psychiatry, Jining Medical University, China
3 Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare & Shenzhen Institute of Mental Health, Shenzhen, China
4 Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare & Shenzhen Institute of Mental Health, Shenzhen, China; Department of Medicine, Shenzhen University, Shenzhen, China