Full text

Turn on search term navigation

© 2020 Nagy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Type 2 diabetes mellitus (T2DM), one of the most common metabolic diseases, is characterized by insulin resistance and inadequate insulin secretion of β cells. Glycogen phosphorylase (GP) is the key enzyme in glycogen breakdown, and contributes to hepatic glucose production during fasting or during insulin resistance. Pharmacological GP inhibitors are potential glucose lowering agents, which may be used in T2DM therapy. A natural product isolated from the cultured broth of the fungal strain No. 138354, called 2,3-bis(4-hydroxycinnamoyloxy)glutaric acid (FR258900), was discovered a decade ago. In vivo studies showed that FR258900 significantly reduced blood glucose levels in diabetic mice. We previously showed that GP inhibitors can potently enhance the function of β cells. The purpose of this study was to assess whether an analogue of FR258900 can influence β cell function. BF142 (Meso-Dimethyl 2,3‐bis[(E)‐3‐(4‐acetoxyphenyl)prop‐2‐enamido]butanedioate) treatment activated the glucose-stimulated insulin secretion pathway, as indicated by enhanced glycolysis, increased mitochondrial oxidation, significantly increased ATP production, and elevated calcium influx in MIN6 cells. Furthermore, BF142 induced mTORC1-specific phosphorylation of S6K, increased levels of PDX1 and insulin protein, and increased insulin secretion. Our data suggest that BF142 can influence β cell function and can support the insulin producing ability of β cells.

Details

Title
Glycogen phosphorylase inhibitor, 2,3‐bis[(2E)‐3‐(4‐hydroxyphenyl)prop‐2‐enamido] butanedioic acid (BF142), improves baseline insulin secretion of MIN6 insulinoma cells
Author
Nagy, Lilla; Béke, Ferenc; Juhász, László; Kovács, Tünde; Juhász-Tóth, Éva; Docsa, Tibor; Tóth, Attila; Gergely, Pál; Somsák, László; Bai, Péter
First page
e0236081
Section
Research Article
Publication year
2020
Publication date
Sep 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2444863969
Copyright
© 2020 Nagy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.