This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Inflammatory bowel diseases (IBDs) are categorized as chronic autoimmune diseases, which mostly target the gastrointestinal tract (GI). Ulcerative colitis (UC) and Crohn’s disease (CD) are the two primary forms of IBDs [1–3]. The main parts involved in the UC are the rectum and colon, whereas the most part involved in CD is the ileum [4]. Although the etiology of IBDs is not completely understood, it has been shown that there are complex interactions between susceptible genes and environmental factors, which lead to defective inflammatory responses [5]. Environmental triggers such as microbiota in a genetically susceptible person may lead to the dysregulation of the immune system, and afterward, their interactions with immune and nonimmune cells can initiate the diseases [6].
The natural killer (NK) cells play important roles in the innate immune system and could be implicated in early responses against infected and transformed cells through cytokine production and direct toxicity [7, 8]. Signaling through inhibitory and activating receptors determines the activity and function of NK cells. The HLA class I molecules act as ligands for killer cell immunoglobulin-like receptors (KIRs), which are presented on the surface of NK cells [7]. KIRs are a group of transmembrane proteins and are mainly presented by NK cells and some groups of T cells. Interaction between KIRs and their corresponding HLA class I ligands could play a critical role in the NK cell function. Furthermore, it has been documented that these genetic combinations could be implicated in cancers and autoimmune and infectious diseases [9, 10]. The KIR receptors are encoded by a family of genes located on chromosome 19 which consists of 15 genes and two pseudogenes [11]. Depending on the intracellular length (long or short) and extracellular domains (2D or 3D), the KIR genes were categorized into 3 groups: activating KIR (aKIR) genes (KIR2DS1, 2DS2, 2DS3, 2DS4, 2DS5, and 3DS1), inhibitory KIR (iKIR) genes (KIR2DL1, 2DL2, 2DL3, 2DL5a, 2DL5b, 3DL1, 3DL2, and 3DL3), and pseudogenes (2DP1 with no protein expression and 3DP1 with a putative protein product). However, KIR2DL4 has the ability to act as both an inhibitory and activating receptor [12]. Interaction of KIR receptors with their appropriate HLA ligands (HLA-B and HLA-C alleles) leads to either activating or inhibitory signals according to the presence of intracellular immunoregulatory tyrosine-based activating or inhibitory motifs [11].
Two types of KIR haplotypes exist: A and B. Haplotype A only has one activating KIR, 2DS4, while haplotype B has various combinations of 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, and 3DS1. HLA-C molecules are the main ligand for inhibitory KIRs. HLA-C has various variants; however, in the case of KIR, recognition could be reduced into two groups based on the amino acid that is located in the extracellular domain at position 80 [9, 10]. Variants belonging to group 1 of HLA-C alleles are those with asparagine at this position and presented as ligands for KIR2DL2 and 2DL3, while variants belonging to group 2 of HLA-C alleles are those with lysine at this position and presented as ligands for KIR2DL1. There is no known KIR for HLA-B-Bw6, but Bw4, another allelic form of HLA-B, is recognized by KIR3DL1. Inhibitory and activating KIRs are almost identical in the sequence of HLA-binding domains; however, there is a low affinity between activating KIRs and HLA-C. This issue proposes that these class I molecules could not be used as a common ligand for aKIRs. There is an important structural difference in the cytoplasmic region of inhibitory and activating KIRs; the iKIRs have a long immunoreceptor tyrosine-based inhibitory motif in their tails, whereas the potential aKIRs need to transfer their signaling via adapter molecules that possess ITAM structures. Therefore, the aKIRs need an adaptor protein to activate NK and NKT cells.
Studies documented that frequency of activating and inhibitory KIRs and their haplotypes is different in various people [10, 13–15]. The body of evidence proposed that KIR genes have an essential role in various diseases. Some combinations of KIR-HLA could modulate the immune response of NK and NKT [16, 17]. Genetic association studies have documented that there is a link between aKIRs and various autoimmune and inflammatory diseases [13–15]. Alteration in NK cell activity in the gut through KIR-HLA interactions may propose a regulatory mechanism for inflammation. Jones et al. showed that there are differences in KIR frequencies, presenting that KIR and their interactions with cognate HLA could be implicated in the UC susceptibility [13].
In our study, the frequency of 15 KIR genes, 5 HLA ligands, and 2 pseudogenes was evaluated in the UC, CD, and control groups. We aimed to clarify the role of KIR and HLA genes and their genotypes in IBD susceptibility. To our knowledge, no study has evaluated the frequency of KIR genes, HLA ligands, and also their interactions in the Iranian population with IBDs.
2. Materials and Methods
2.1. Study Population
The study population was made up of 183 IBD patients (100 UC patients (41 men and 59 women) and 83 CD patients (28 men and 55 women)) aged
This study was performed based on the Declaration of Helsinki guidelines. Moreover, methods were carried out under the relevant regulations and guidelines by the mentioned institution. All the participants were informed of blood collection, DNA isolation, and genetic evaluation. In addition, the written informed consent was signed by all participants and/or their legal guardian/s. The ethics committee of the Tehran University of Medical Sciences approved this study.
2.2. DNA Extraction and Genotyping
Blood samples were gathered into tubes with ethylenediaminetetraacetic acid (EDTA). The standard phenol/chloroform method [20] was applied to extract genomic DNA from blood samples. The purity and quantity of DNA were measured with NanoDrop (Thermo Fisher Scientific, USA). For further investigation, concentration was optimized to 100 ng/μL. In order to genotype DNA samples, PCR-SSP was used to evaluate the absence or presence of 15 KIR genes (KIR2DS1, 2DS2, 2DS3, 2DS4 (full-length allele, 2DS4 (full); variant alleles, 2DS4 (var)), 2DS5, 3DS1, 2DL1, 2DL2, 2DL3, 2DL4, 2DL5A, 2DL5B, 3DL1, 3DL2, and 3DL3 genes), 5 HLA class I ligands (HLA-B-Bw4Ile80, HLA-B-Bw4Thr80, HLA-A-Bw4 (1 and 2), HLA-C2Lys80, and HLA-C1Asn80), and two pseudogenes (2DP1 and 3DP1 (3DP1-1 and 3DP1-2)).
PCR conditions and primers were according to Tajik et al. [21, 22], Vilches et al. [23], Chainonthee et al. [24], Gagne et al. [25], our previous study [26], Bunce et al. [27], and Voorter et al. [28] (Supplementary file 1). G protein-coupled receptor 98 (GPR98), HLA-DR, and growth hormone genes 1 and 2 (GH1 and GH2) were used as internal controls in PCR-SSP reactions (Supplementary file 1). Each PCR reaction had an internal control. The mixture employed to achieve a10 μL volume reaction was consist of 1 μL of PCR buffer (10x), 0.32 μL (10 pmol) of internal control for each reverse and forward primer, 1.28 μL (10 pmol) of reverse and forward specific primers for each KIR, 0.1 μL (5 U/μL) of Taq DNA polymerase, 0.25 μL (10 mM) of deoxynucleoside triphosphate (dNTP), 0.32 μL (50 mM) MgCl2, 5.13 μL water, and 2 μL of template DNA. PCR temperature cycling conditions were as follows: 2 min at 96°C (denaturation) and then 10 s at 94°C (10 cycles) and 60 s at 65°C, followed by 10 s at 94°C (denaturation, 20 cycles), 50 s at 61°C (annealing), 30 s at 72°C (final extension), and finally 10 min at 4°C. The PCR system ABI/2720 was used to amplify the PCR products (Applied Biosystems, Foster City, CA, USA). In order to amplify the HLA-B-Bw4, annealing temperature was increased to 65°C. After electrophoresis in 2% agarose gels containing ethidium bromide, PCR products were visualized under ultraviolet light.
2.3. Statistical Methods
Statistical analyses were carried out by SPSS version 22 (IBM Corp., Armonk, NY, USA). In order to compare the frequency of KIR genes and their HLA ligands between the case and control groups, Pearson’s chi-squared test with continuity correction was applied. When the expected difference between the two groups was small, Fisher’s exact test was applied. For estimations of strength of association, odds ratios (ORs) and 95% confidence intervals (CIs) were used. The Benjamini-Hochberg method was performed to control the false discovery rate (FDR) [29]. After correction for comparison,
A geometric series was used in order to determine the specific genotype and its frequency. Genotype ID shows an exclusive number generated by the summation of members of a geometric series comprising products of each gene code (1 for positive and 0 for negative) multiplied by consecutive powers of 2:
3. Results
3.1. Implication of KIR and HLA Genes in IBD Susceptibility
Primer sets (specific and internal) of the PCR-SSP assay for combined KIR-HLA genotyping are depicted in Supplementary file 1. Associations of KIR and HLA genes with IBDs (UC and CD) are depicted in Table 1. There were no significant differences in the frequency of inhibitory KIRs and pseudogenes between IBD patients and healthy subjects. Concerning aKIRs, the frequency of KIR2DS4 (full) was significantly different between the UC and control groups (
Table 1
Comparison between KIR and HLA gene frequencies in the IBD and control groups.
KIR alleles | UC, | CD, | Control, | UC vs. control | Adj. | Odds ratio (95% CI) | CD vs. control | Adj. | Odds ratio (95% CI) |
Inhibitory | |||||||||
2DL1 | 99 (99) | 81 (98) | 267 (97) | 0.37 | 0.78 | 2.59 (0.3-21.3) | 0.94 | 1 | 1.06 (0.2-5.2) |
2DL2 | 64 (64) | 55 (66) | 167 (61) | 0.59 | 0.98 | 1.14 (0.7-1.8) | 0.38 | 1 | 1.25 (0.7-2.1) |
2DL3 | 85 (85) | 74 (83) | 245 (89) | 0.24 | 0.78 | 0.67 (0.3-1.3) | 0.94 | 1 | 0.97 (0.4-2.1) |
2DL4 | 100 (100) | 83 (100) | 274 (100) | — | — | — | — | — | — |
2DL5 | 69 (69) | 61 (73) | 215 (78) | 0.059 | 0.59 | 0.61 (0.4-1.1) | 0.34 | 1 | 0.76 (0.4-1.3) |
2DL5A | 100 (100) | 83 (100) | 135 (49) | — | — | — | — | — | — |
2DL5B | 55 (55) | 53 (64) | 167 (61) | 0.30 | 0.78 | 0.78 (0.5-1.2) | 0.63 | 1 | 1.13 (0.7-1.9) |
3DL1 | 90 (90) | 74 (89) | 254 (93) | 0.39 | 0.78 | 0.71 (0.3-1.6) | 0.29 | 1 | 0.64 (0.3-1.5) |
3DL2 | 100 (100) | 83 (100) | 274 (100) | — | — | — | — | — | — |
3DL3 | 100 (100) | 83 (100) | 274 (100) | — | — | — | — | — | — |
Activating | |||||||||
2DS1 | 70 (70) | 61 (73) | 172 (63) | 0.19 | 0.24 | 1.38 (0.8-2.2) | 0.07 | 0.24 | 1.64 (0.9-2.8) |
2DS2 | 67 (67) | 55 (66) | 173 (63) | 0.49 | 0.49 | 1.18 (0.7-1.9) | 0.60 | 0.63 | 1.14 (0.7-1.9) |
2DS3 | 48 (48) | 41 (49) | 102 (37) | 0.06 | 0.16 | 1.55 (0.9-2.5) | 0.048 | 0.24 | 1.64 (1.0-2.7) |
2DS4 (full) | 19 (19) | 21 (25) | 84 (31) | 0.02 | 0.14 | 0.53 (0.3-0.9) | 0.35 | 0.63 | 0.76 (0.4-1.3) |
2DS4 (var) | 85 (85) | 62 (75) | 217 (79) | 0.21 | 0.24 | 1.48 (0.8-2.7) | 0.38 | 0.63 | 0.77 (0.4-1.4) |
2DS5 | 47 (47) | 33 (40) | 101 (37) | 0.07 | 0.16 | 1.51 (0.9-2.4) | 0.63 | 0.63 | 1.13 (0.7-1.9) |
3DS1 | 53 (53) | 41 (49) | 124 (45) | 0.18 | 0.24 | 1.36 (0.8-2.1) | 0.51 | 0.63 | 1.18 (0.7-1.9) |
Pseudogene | |||||||||
2DP1 | 99 (99) | 81 (98) | 265 (97) | 0.25 | 0.48 | 3.36 (0.4-26.8) | 0.68 | 0.68 | 1.4 (0.3-6.5) |
3DP1-1 | 24 (24) | 18 (22) | 80 (29) | 0.32 | 0.48 | 0.76 (0.5-1.3) | 0.18 | 0.68 | 0.67 (0.4-1.2) |
3DP1-2 | 94 (100) | 82 (99) | 259 (95) | — | — | — | 0.13 | 0.27 | 4.69 (0.6-36.5) |
HLA alleles | |||||||||
HLA-C1Asn80 | 76 (76) | 50 (60) | 207 (76) | 0.93 | 1 | 1.02 (0.6-1.7) | 0.007 | 0.04 | 0.49 (0.3-0.8) |
HLA-C2Lys80 | 66 (66) | 57 (69) | 200 (73) | 0.18 | 0.36 | 0.71 (0.4-1.2) | 0.44 | 0.52 | 0.81 (0.5-1.4) |
HLA-B-Bw4Thr80 | 1 (1) | 3 (4) | 38 (14) | 0.006 | 0.03 | 0.06 (0.008-0.4) | 0.017 | 0.051 | 0.23 (0.07-0.77) |
HLA-B-Bw4Ile80 | 53 (53) | 51 (61) | 149 (54) | 0.81 | 1 | 0.94 (0.6-1.5) | 0.25 | 0.37 | 1.34 (0.8-2.2) |
HLA-A-Bw4-1 | 21 (21) | 25 (30) | 85 (31) | 0.058 | 0.17 | 0.59 (0.3-1.0) | 0.10 | 0.2 | 0.6 (0.4-1.1) |
HLA-A-Bw4-2 | 96 (96) | 76 (92) | 274 (100) | — | — | — | — | — | — |
aFDR-adjusted
3.2. Implication of KIR and/or HLA Genotypes on IBD Susceptibility
The association of KIR genotypes with IBDs is illustrated in Table 2. There was no significant difference between the UC and control groups in the full-array combination of the frequency of KIR genes. In the case of CD patients and healthy controls, KIR genotype no. 5 and 6 showed a significant susceptible association with CD (
Table 2
KIR genotypes in normal individuals and IBD patients.
KIR genotype | KIR genes | Patient (%) | Control (%) | OR (95% CI) | ||||||||||||||||||||
Inhibitory KIR | Activating KIR | Pseudogene | ||||||||||||||||||||||
2DL1 | 2DL2 | 2DL3 | 2DL4 | 2DL5 | 2DL5A | 2DL5B | 3DL1 | 3DL2 | 3DL3 | 2DS1 | 2DS2 | 2DS3 | 2DS4 F | 2DS4 V | 2DS5 | 3DS1 | 2DP1 | 3DP1-1 | 3DP1-2 | |||||
Ulcerative colitis vs. control | ||||||||||||||||||||||||
1 | + | + | + | + | + | + | + | + | + | + | + | + | − | − | + | + | + | + | + | + | 3 (3%) | 8 (3%) | 0.97 | 1.0 (0.2-3.9) |
2 | + | − | + | + | + | + | − | + | + | + | + | − | − | − | + | + | + | + | − | + | 8 (8%) | 23 (9.2%) | 0.95 | 0.4 (0.4-2.2) |
3 | + | + | + | + | + | + | + | − | + | + | + | + | + | − | + | + | + | − | + | 2 (2%) | 7 (2.6%) | 0.76 | 0.8 (0.2-3.8) | |
Crohn’s disease vs. control | ||||||||||||||||||||||||
1 | + | + | + | + | + | + | + | + | + | + | + | + | − | − | + | + | + | + | + | + | 3 (3.6%) | 8 (3%) | 0.75 | 1.2 (0.3-4.8) |
2 | + | + | + | + | + | + | + | + | + | + | + | + | + | − | + | + | + | + | − | + | 2 (2.4%) | 14 (5.4%) | 0.31 | 0.46 (0.1-2.1) |
3 | + | − | + | + | + | + | − | + | + | + | + | − | − | − | + | + | + | + | − | + | 5 (6%) | 23 (9.2%) | 0.48 | 0.69 (0.2-1.9) |
4 | + | + | + | + | + | + | + | − | + | + | + | + | + | − | − | + | + | + | − | + | 4 (4.8%) | 7 (2.6%) | 0.30 | 1.9 (0.5-6.7) |
5 | + | − | + | + | + | + | − | + | + | + | + | − | + | − | + | − | + | + | − | + | 5 (6%) | 2 (0.7%) | 0.01 | 8.7 (1.7-45.8) |
6 | + | + | + | + | + | + | + | + | + | + | + | + | + | − | + | − | − | + | − | + | 9 (10.8%) | 1 (0.4%) | 0.001 | 33.2 (4.1-266.3) |
A
The association of HLA gene combinations in IBDs is illustrated in Table 3. We did not find any significant difference in the frequency of the gene combinations neither between the UC and control groups nor between CD and control groups. In the evaluation of aKIR and iKIR genotype frequencies, there were no significant differences between IBD patients and healthy controls (Tables 4 and 5).
Table 3
Human leukocyte antigen (HLA) genotypes in normal individuals and IBD patients.
HLA genotype | HLA gene/allele | Patients (%) | Control (%) | OR (95% CI) | |||||
HLA-C1Asn80 | HLA-C2Lys80 | HLA-B-Bw4Thr | HLA-B-Bw4Ile80 | HLA-A-Bw4 | |||||
Ulcerative colitis vs. control | |||||||||
1 | + | + | − | + | + | 3 (3%) | 22 (8%) | 0.09 | 0.35 (0.1-1.2) |
2 | + | + | − | + | − | 23 (23%) | 40 (14.6%) | 0.056 | 1.74 (0.9-3.1) |
3 | + | − | − | + | − | 10 (10%) | 31 (11.3%) | 0.72 | 0.87 (0.4-1.8) |
4 | + | + | − | − | − | 14 (14%) | 32 (11.7%) | 0.55 | 1.23 (0.6-2.4) |
5 | − | + | − | − | − | 10 (10%) | 24 (8.8%) | 0.71 | 1.16 (0.5-2.5) |
Crohn’s disease vs. control | |||||||||
1 | + | + | − | + | + | 4 (4.8%) | 22 (8%) | 0.33 | 0.58 (0.2-1.7) |
2 | + | + | − | − | + | 5 (6%) | 19 (6.9%) | 0.77 | 0.86 (0.3-2.4) |
3 | − | + | − | − | + | 5 (6%) | 4 (1.5%) | 0.03 | 4.33 (1.1-16.5) |
4 | + | + | − | + | − | 15 (18.1%) | 40 (14.6%) | 0.44 | 1.29 (0.7-2.5) |
5 | + | − | − | + | − | 10 (12%) | 31 (11.3%) | 0.85 | 1.07 (0.5-2.3) |
6 | + | + | − | − | − | 5 (6%) | 32 (11.7%) | 0.14 | 0.48 (0.2-1.3) |
7 | − | + | − | − | − | 11 (13.3%) | 24 (8.8%) | 0.23 | 1.59 (0.7-3.4) |
A
Table 4
Activating KIR (aKIR) genotypes in normal individuals and IBD patients.
HLA genotype | HLA gene/allele | Patients (%) | Control (%) | OR (95% CI) | |||||||
2DS1 | 2DS2 | 2DS3 | 2DS4 F | 2DS4 V | 2DS5 | 3DS1 | |||||
Ulcerative colitis vs. control | |||||||||||
1 | + | + | + | − | + | + | + | 13 (13%) | 17 (6.6%) | 0.13 | 1.74 (0.8-3.6) |
2 | − | + | − | + | + | − | − | 3 (3%) | 19 (7.4%) | 0.16 | 0.41 (0.1-1.4) |
3 | − | − | − | + | + | − | − | 3 (3%) | 15 (5.8%) | 0.33 | 0.53 (0.1-1.9) |
4 | − | − | − | − | + | − | − | 10 (10%) | 33 (13.7%) | 0.58 | 0.81 (0.4-1.7) |
Crohn’s disease vs. control | |||||||||||
1 | + | + | − | − | + | + | + | 6 (7.2%) | 12 (4.6%) | 0.30 | 1.70 (0.6-4.7) |
2 | + | − | − | − | + | + | + | 6 (7.2%) | 23 (9.2) | 0.73 | 0.85 (0.3-2.1) |
3 | + | + | + | − | + | − | − | 13 (15.6%) | 26 (10.5%) | 0.11 | 1.77 (0.8-3.6) |
4 | − | − | − | − | + | − | − | 4 (4.8%) | 33 (13.7%) | 0.06 | 0.37 (0.1-1.1) |
A
Table 5
Inhibitory KIR (iKIR) genotypes in normal individuals and IBD patients.
HLA genotype | HLA gene/allele | Patients (%) | Control (%) | OR (95% CI) | ||||||||||
2DL1 | 2DL2 | 2DL3 | 2DL4 | 2DL5 | 2DL5A | 2DL5B | 3DL1 | 3DL2 | 3DL3 | |||||
Ulcerative colitis vs. control | ||||||||||||||
1 | + | + | + | + | + | + | + | + | + | + | 28 (28%) | 59 (22%) | 0.19 | 1.41 (0.8-2.4) |
2 | + | + | − | + | + | + | + | + | + | + | 8 (8%) | 11 (4%) | 0.12 | 2.08 (0.8-5.3) |
3 | + | − | + | + | + | + | − | + | + | + | 12 (12%) | 44 (16%) | 0.33 | 0.71 (0.4-1.4) |
Crohn’s disease vs. control | ||||||||||||||
1 | + | + | + | + | + | + | + | + | + | + | 26 (31%) | 59 (22%) | 0.07 | 1.82 (1.1-3.1) |
2 | + | + | − | + | + | + | + | + | + | + | 7 (8%) | 11 (4%) | 0.12 | 2.17 (0.8-5.8) |
3 | + | − | + | + | + | + | − | + | + | + | 12 (14%) | 44 (16%) | 0.69 | 0.87 (0.4-1.7) |
4 | + | + | + | + | + | + | + | − | + | + | 7 (8%) | 10 (3.6%) | 0.08 | 2.40 (0.8-6.5) |
A
3.3. Receptor-Ligand Interaction
Seventeen pair sets of KIR/HLA interaction in 2 possible conditions (absence and presence of interaction) were analyzed to clarify the role of these interactions in IBD susceptibility. Among all confirmed KIR/HLA pairs, there was no significant association between the UC and control groups.
There was a significant difference in the frequency of KIR2DL3(+)/HLA.C1Asn(+) interaction between the CD patients and the control group (43 (52%) vs. 186 (67%), 0.51 (0.31-0.85),
4. Discussion
Investigations on IBD patients have shown that the innate immune system plays critical roles against microbial infections through the initiation of an inflammatory response in the bowel [30]. One of these innate immune cells with an important role in GI is NK cell. NK cells are regulated through KIR-HLA interactions. Studies showed that these interactions were implicated in various autoimmune rheumatic diseases [31–33]. Nonetheless, results obtained about KIR genes and IBD susceptibility from different studies are controversial [34].
Determining the role of KIRs and HLA ligands in IBD susceptibility needs further investigations since NK cells have a vast repertoire of surface receptors, which are participating in NK cell activity [31].
During the past few years, many authors have been interested in the role of NK cells in IBDs [35–37]. Johansson et al. discussed the controversial roles of NK cells in the disease. In addition, they suggested that future investigations should be focused on the anatomical localization of NK cells and the cytokine environment [38]. Giacomelli et al. indicated that NK cells have a low level of killing activity when cocultured with PBMC of IBD patients. They proposed that this decreased activity could not be because of primary defects in NK cells since these NK cells were normal in killing activity. They suggested that inhibitory serum factors, likely from lymphocytes, could be produced in IBD patients, thereby leading to a low level of NK cell activity [39]. Another study has also shown that the NK cell cytotoxicity of UC patients is reduced [40].
There are reports that showed associations between the expression of surface receptors of NK cells and their cognate HLA ligands and autoimmune and infectious diseases [8]. For instance, ankylosing spondylitis is one of these rheumatic diseases in which the frequency of two KIR genes (KIR2DL3 and KIR2DL5) and two HLA ligands (HLA-B27 and HLA-C2Lys80) was significantly different between AS patients and healthy controls [41]. Moreover, HLA-Cw4 and KIR2DS4 were associated with rheumatoid arthritis [42]. Our recent study did not show any significant differences in the frequency of KIR genes between BD patients and healthy controls. In the case of HLA genes, HLA-B5, HLA-B51, HLA-B-Bw4Ile80, and HLA-C2Lys80 showed a susceptible association, while HLA-C1Asn80 showed a protective effect against BD [26]. Jones et al. documented that KIR2DS2 and KIR2DL2 have a susceptible association with UC. In addition, they showed that the KIR2DL3 in the presence of its ligand, HLA-C1, has a protective effect against UC [13]. Hollenbach et al. reported that the KIR2DL2/3 has a susceptible association, while the C2 ligand has a protective effect on CD [43].
We evaluated the genetic diversity of KIRs and their corresponding ligands in the Iranian population with CD and UC. In the case of KIR genes, we reported that these genes are not associated with susceptibility to IBDs. Indeed, our results were in line with the studies of Saito et al. [44] and Wilson et al. [11], showing no significant association between KIR genes and CD patients. In the case of UC patients, our results were different from the mentioned studies. Indeed, each study tells a different story about the role of KIR genes in susceptibility to UC. The same data were obtained about the role of HLA class I with the disease susceptibility.
In our study, the HLA-B-Bw4Thr80 showed a higher frequency in controls in comparison to UC patients and showed a protective role for the HLA-B-Bw4Thr80 in UC patients. Furthermore, the HLA-C1Asn80 also showed a higher frequency in controls in comparison to CD patients and showed a protective role for the HLA-C1Asn80 in CD patients (Table 1). Therefore, we can only assume that there is a potential relationship between HLA genes and IBD diseases. However, none of these HLA genotype combinations were significant between the control and patient groups (Table 3). In the case of aKIR and iKIR genotypes, we did not show any significant association between these genotypes and IBD susceptibility (Tables 4 and 5). Gene-gene interaction analysis showed that the interaction between KIR2DL3 and HLA.C1Asn has a susceptible role in CD.
5. Conclusions
Collectively, our data do not support a strong role of NK cells in IBD susceptibility, but it does not rule out a role for KIR variability in IBD patients. However, there are some protective associations such as Bw4 alleles (present in 1% of UC patients and 4% of CD patients versus 14% of controls). These associations may be due to the interaction of these alleles to TCRs rather than KIRs.
Ethical Approval
This study was performed based on the Declaration of Helsinki guidelines. The ethics committee of the Tehran University of Medical Sciences approved this study.
Consent
The written informed consent was signed by all participants and/or their legal guardian/s before enrolling in the study.
Authors’ Contributions
Fereshteh Beigmohammadi is responsible for the acquisition of data, interpretation of data, drafting of the article, and final approval of the article. Mahdi Mahmoudi helped in the conception and design of the study, analysis, interpretation of data, critical revision of the article, and final approval of the article. Jafar Karami is involved in the analysis, interpretation of data, drafting of the article, and final approval of the article. Nooshin Ahmadzadeh helped in the acquisition of data, interpretation of data, drafting of the article, and final approval of the article. Nasser Ebrahimi-Daryani helped in the conception and design of the study, interpretation of data, critical revision of the article, and final approval of the article. Nima Rezaei helped in the conception and design of the study, interpretation of data, critical revision of the article, and final approval of the article.
[1] C. Abraham, J. H. Cho, "Inflammatory bowel disease," The New England Journal of Medicine, vol. 361 no. 21, pp. 2066-2078, DOI: 10.1056/NEJMra0804647, 2009.
[2] G. G. Kaplan, "The global burden of IBD: from 2015 to 2025," Nature Reviews Gastroenterology & Hepatology, vol. 12 no. 12, pp. 720-727, DOI: 10.1038/nrgastro.2015.150, 2015.
[3] K. Matsuoka, T. Kanai, "The gut microbiota and inflammatory bowel disease," Seminars in Immunopathology, vol. 37 no. 1, pp. 47-55, DOI: 10.1007/s00281-014-0454-4, 2015.
[4] R. López-Hernández, J. A. Campillo, I. Legaz, M. Valdés, H. Salama, F. Boix, A. M. Hernández-Martínez, J. Eguia, G. González-Martínez, M. R. Moya-Quiles, A. Minguela, A. García-Alonso, F. Carballo, M. Muro, "Killer immunoglobulin-like receptor repertoire analysis in a Caucasian Spanish cohort with inflammatory bowel disease," Microbiology and Immunology, vol. 60 no. 11, pp. 787-792, DOI: 10.1111/1348-0421.12447, 2016.
[5] S. J. Brown, L. Mayer, "The immune response in inflammatory bowel disease," The American Journal of Gastroenterology, vol. 102 no. 9, pp. 2058-2069, DOI: 10.1111/j.1572-0241.2007.01343.x, 2007.
[6] H. S. P. De Souza, C. Fiocchi, "Immunopathogenesis of IBD: current state of the art," Nature Reviews Gastroenterology & Hepatology, vol. 13 no. 1, pp. 13-27, DOI: 10.1038/nrgastro.2015.186, 2016.
[7] J. A. Hamerman, K. Ogasawara, L. L. Lanier, "NK cells in innate immunity," Current Opinion in Immunology, vol. 17 no. 1, pp. 29-35, DOI: 10.1016/j.coi.2004.11.001, 2005.
[8] A. P. Williams, A. R. Bateman, S. I. Khakoo, "Hanging in the BALANCE: KIR and their role in disease," Molecular Interventions, vol. 5 no. 4, pp. 226-240, DOI: 10.1124/mi.5.4.6, 2005.
[9] O. Mandelboim, H. T. Reyburn, E. G. Sheu, M. Valés-Gómez, D. M. Davis, L. Pazmany, J. L. Strominger, "The binding site of NK receptors on HLA-C molecules," Immunity, vol. 6 no. 3, pp. 341-350, DOI: 10.1016/S1074-7613(00)80336-2, 1997.
[10] M. V. Martínez-Sánchez, A. Periago, I. Legaz, L. Gimeno, A. Mrowiec, N. R. Montes-Barqueros, J. A. Campillo, J. M. Bolarin, M. V. Bernardo, M. R. López-Álvarez, C. González, M. C. García-Garay, M. Muro, V. Cabañas-Perianes, J. L. Fuster, A. M. García-Alonso, J. M. Moraleda, M. R. Álvarez-Lopez, A. Minguela, "Overexpression of KIR inhibitory ligands (HLA-I) determines that immunosurveillance of myeloma depends on diverse and strong NK cell licensing," Oncoimmunology, vol. 5 no. 4, article e1093721,DOI: 10.1080/2162402x.2015.1093721, 2015.
[11] T. J. Wilson, M. Jobim, L. F. Jobim, P. Portela, P. H. Salim, M. A. Rosito, D. C. Damin, C. Flores, A. Peres, M. B. Machado, J. A. B. Chies, G. Schwartsmann, R. Roesler, "Study of killer immunoglobulin-like receptor genes and human leukocyte antigens class I ligands in a Caucasian Brazilian population with Crohn's disease and ulcerative colitis," Human Immunology, vol. 71 no. 3, pp. 293-297, DOI: 10.1016/j.humimm.2009.12.006, 2010.
[12] C. C. Winter, J. E. Gumperz, P. Parham, E. O. Long, N. Wagtmann, "Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition," The Journal of Immunology, vol. 161 no. 2, pp. 571-577, 1998.
[13] D. C. Jones, R. S. Edgar, T. Ahmad, J. R. F. Cummings, D. P. Jewell, J. Trowsdale, N. T. Young, "Killer Ig-like receptor (KIR) genotype and HLA ligand combinations in ulcerative colitis susceptibility," Genes and Immunity, vol. 7 no. 7, pp. 576-582, DOI: 10.1038/sj.gene.6364333, 2006.
[14] I. Legaz, M. R. López-Álvarez, J. A. Campillo, M. R. Moya-Quiles, J. M. Bolarín, J. de la Peña, G. Salgado, L. Gimeno, A. M. García-Alonso, M. Muro, M. Miras, C. Alonso, M. R. Álvarez-López, A. Minguela, "KIR gene mismatching and KIR/C ligands in liver transplantation," Transplantation, vol. 95 no. 8, pp. 1037-1044, DOI: 10.1097/TP.0b013e318286486c, 2013.
[15] J. A. Campillo, I. Legaz, M. R. López-Álvarez, J. M. Bolarín, B. Las Heras, M. Muro, A. Minguela, M. R. Moya-Quiles, R. Blanco-García, H. Martínez-Banaclocha, A. M. García-Alonso, M. R. Álvarez-López, J. A. Martínez-Escribano, "KIR gene variability in cutaneous malignant melanoma: influence of KIR2D/HLA-C pairings on disease susceptibility and prognosis," Immunogenetics, vol. 65 no. 5, pp. 333-343, DOI: 10.1007/s00251-013-0682-0, 2013.
[16] G. W. Nelson, M. P. Martin, D. Gladman, J. Wade, J. Trowsdale, M. Carrington, "Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis," The Journal of Immunology, vol. 173 no. 7, pp. 4273-4276, DOI: 10.4049/jimmunol.173.7.4273, 2004.
[17] S. J. Holm, K. Sakuraba, L. Mallbris, K. Wolk, M. Ståhle, F. O. Sanchez, "Distinct HLA-C/KIR genotype profile associates with guttate psoriasis," Journal of Investigative Dermatology, vol. 125 no. 4, pp. 721-730, DOI: 10.1111/j.0022-202X.2005.23879.x, 2005.
[18] A. Dignass, R. Eliakim, F. Magro, C. Maaser, Y. Chowers, K. Geboes, G. Mantzaris, W. Reinisch, J. F. Colombel, S. Vermeire, S. Travis, J. O. Lindsay, G. van Assche, "Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 1: definitions and diagnosis," Journal of Crohn's and Colitis, vol. 6 no. 10, pp. 965-990, DOI: 10.1016/j.crohns.2012.09.003, 2012.
[19] "The second European evidence-based consensus on the diagnosis and management of Crohn's disease: definitions and diagnosis," Journal of Crohn's and Colitis, vol. 4 no. 1,DOI: 10.1016/j.crohns.2009.12.003, 2010.
[20] B. A. Roe, J. Crabtree, A. Khan, Protocols for Recombinant DNA Isolation, Cloning, and Sequencing. Methods for DNA Isolation, 1996.
[21] N. Tajik, F. Shahsavar, T. Mousavi, M. F. Radjabzadeh, "Distribution of KIRgenes in the Iranian population," Tissue Antigens, vol. 74 no. 1, pp. 22-31, DOI: 10.1111/j.1399-0039.2009.01263.x, 2009.
[22] N. Tajik, F. Shahsavar, M. Nasiri, M. F. Radjabzadeh, "Compound KIR-HLA genotype analyses in the Iranian population by a novel PCR–SSP assay," International Journal of Immunogenetics, vol. 37 no. 3, pp. 159-168, DOI: 10.1111/j.1744-313X.2010.00906.x, 2010.
[23] C. Vilches, J. Castano, N. Gomez-Lozano, E. Estefania, "Facilitation of KIR genotyping by a PCR-SSP method that amplifies short DNA fragments," Tissue Antigens, vol. 70 no. 5, pp. 415-422, DOI: 10.1111/j.1399-0039.2007.00923.x, 2007.
[24] W. Chainonthee, G. Böttcher, K. Gagne, M. Füssel, J. D. Bignon, R. Wassmuth, "Improved KIR gene and HLA-C KIR ligand sequence-specific primer polymerase chain reaction genotyping using whole genome amplification," Tissue Antigens, vol. 76 no. 2, pp. 135-143, DOI: 10.1111/j.1399-0039.2010.01479.x, 2010.
[25] K. Gagne, G. Brizard, B. Gueglio, N. Milpied, P. Herry, F. Bonneville, M. L. Chéneau, N. Schleinitz, A. Cesbron, G. Folléa, J. L. Harrousseau, J. D. Bignon, "Relevance of KIR gene polymorphisms in bone marrow transplantation outcome," Human Immunology, vol. 63 no. 4, pp. 271-280, DOI: 10.1016/S0198-8859(02)00373-7, 2002.
[26] H. Mohammad-Ebrahim, E. Kamali-Sarvestani, M. Mahmoudi, M. Beigy, J. Karami, N. Ahmadzadeh, F. Shahram, "Association of killer cell immunoglobulin-like receptor (KIR) genes and their HLA ligands with susceptibility to Behçet’s disease," Scandinavian Journal of Rheumatology, vol. 47 no. 2, pp. 155-163, DOI: 10.1080/03009742.2017.1340510, 2018.
[27] M. Bunce, C. M. O'Neill, M. C. N. M. Barnardo, P. Krausa, M. J. Browning, P. J. Morris, K. I. Welsh, "Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP)," Tissue Antigens, vol. 46 no. 5, pp. 355-367, DOI: 10.1111/j.1399-0039.1995.tb03127.x, 1995.
[28] C. E. M. Voorter, W. T. N. Swelsen, E. M. van den Berg-Loonen, "B*27 in molecular diagnostics: impact of new alleles and polymorphism outside exons 2 and 3," Tissue Antigens, vol. 60 no. 1, pp. 25-35, DOI: 10.1034/j.1399-0039.2002.600104.x, 2002.
[29] Y. Benjamini, Y. Hochberg, "Controlling the false discovery rate: a practical and powerful approach to multiple testing," Journal of the Royal Statistical Society: Series B (Methodological), vol. 57 no. 1, pp. 289-300, DOI: 10.1111/j.2517-6161.1995.tb02031.x, 1995.
[30] D. K. Podolsky, "Inflammatory bowel disease," The New England Journal of Medicine, vol. 347 no. 6, pp. 417-429, DOI: 10.1056/NEJMra020831, 2002.
[31] S. Rajagopalan, E. O. Long, "Understanding how combinations of HLA and KIR genes influence disease," Journal of Experimental Medicine, vol. 201 no. 7, pp. 1025-1029, DOI: 10.1084/jem.20050499, 2005.
[32] L. Ma, T. L. Assimes, N. B. Asadi, C. Iribarren, T. Quertermous, W. H. Wong, "An “almost exhaustive” search-based sequential permutation method for detecting epistasis in disease association studies," Genetic Epidemiology, vol. 34 no. 5, pp. 434-443, DOI: 10.1002/gepi.20496, 2010.
[33] M. Takeno, Y. Shimoyama, J.-I. Kashiwakura, H. Nagafuchi, T. Sakane, N. Suzuki, "Abnormal killer inhibitory receptor expression on natural killer cells in patients with Behçet's disease," Rheumatology International, vol. 24 no. 4, pp. 212-216, DOI: 10.1007/s00296-003-0352-x, 2004.
[34] P. Fietta, "Behçet's disease: familial clustering and immunogenetics," Clinical and Experimental Rheumatology, vol. 23, pp. S96-105, 2005.
[35] G. Bouma, W. Strober, "The immunological and genetic basis of inflammatory bowel disease," Nature Reviews Immunology, vol. 3 no. 7, pp. 521-533, DOI: 10.1038/nri1132, 2003.
[36] S. Danese, A. Gasbarrini, "Chemokines in inflammatory bowel disease," Journal of Clinical Pathology, vol. 58 no. 10, pp. 1025-1027, DOI: 10.1136/jcp.2005.030916, 2005.
[37] E. V. Tsianos, K. Katsanos, "Do we really understand what the immunological disturbances in inflammatory bowel disease mean?," World Journal of Gastroenterology, vol. 15 no. 5, pp. 521-525, DOI: 10.3748/wjg.15.521, 2009.
[38] S. Johansson, L. Berg, H. Hall, P. Höglund, "NK cells: elusive players in autoimmunity," Trends in Immunology, vol. 26 no. 11, pp. 613-618, DOI: 10.1016/j.it.2005.08.008, 2005.
[39] R. Giacomelli, A. Passacantando, G. Frieri, I. Parzanese, S. D'ALò, P. Vernia, M. T. Pimpo, C. Petrucci, R. Caprilli, M. G. Cifone, G. Tonietti, "Circulating soluble factor-inhibiting natural killer (NK) activity of fresh peripheral blood mononuclear cells (PBMC) from inflammatory bowel disease (IBD) patients," Clinical and Experimental Immunology, vol. 115 no. 1, pp. 72-77, DOI: 10.1046/j.1365-2249.1999.00741.x, 1999.
[40] I. O. Auer, E. Ziemer, H. Sommer, "Decreased in vitro natural killer [NK] cell activity in Crohn’s disease [CD] in peripheral blood," Recent Advances in Crohn’s Disease, pp. 424-430, DOI: 10.1007/978-94-009-8273-4_95, 1981.
[41] J. S. Smolen, R. B. M. Landewé, J. W. J. Bijlsma, G. R. Burmester, M. Dougados, A. Kerschbaumer, I. B. McInnes, A. Sepriano, R. F. van Vollenhoven, M. de Wit, D. Aletaha, M. Aringer, J. Askling, A. Balsa, M. Boers, A. A. den Broeder, M. H. Buch, F. Buttgereit, R. Caporali, M. H. Cardiel, D. de Cock, C. Codreanu, M. Cutolo, C. J. Edwards, Y. van Eijk-Hustings, P. Emery, A. Finckh, L. Gossec, J. E. Gottenberg, M. L. Hetland, T. W. J. Huizinga, M. Koloumas, Z. Li, X. Mariette, U. Müller-Ladner, E. F. Mysler, J. A. P. da Silva, G. Poór, J. E. Pope, A. Rubbert-Roth, A. Ruyssen-Witrand, K. G. Saag, A. Strangfeld, T. Takeuchi, M. Voshaar, R. Westhovens, D. van der Heijde, "EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update," Annals of the Rheumatic Diseases, vol. 79 no. 6, pp. 685-699, DOI: 10.1136/annrheumdis-2019-216655, 2020.
[42] J. H. Yen, C. H. Lin, W. C. Tsai, C. C. Wu, T. T. Ou, C. J. Hu, H. W. Liu, "Killer cell immunoglobulin-like receptor gene's repertoire in rheumatoid arthritis," Scandinavian Journal of Rheumatology, vol. 35 no. 2, pp. 124-127, DOI: 10.1080/03009740500381252, 2009.
[43] J. A. Hollenbach, M. B. Ladner, K. Saeteurn, K. D. Taylor, L. Mei, T. Haritunians, D. P. B. McGovern, H. A. Erlich, J. I. Rotter, E. A. Trachtenberg, "Susceptibility to Crohn’s disease is mediated by KIR2DL2/KIR2DL3 heterozygosity and the HLA-C ligand," Immunogenetics, vol. 61 no. 10, pp. 663-671, DOI: 10.1007/s00251-009-0396-5, 2009.
[44] H. Saito, A. Hirayama, T. Umemura, S. Joshita, K. Mukawa, T. Suga, E. Tanaka, M. Ota, "Association between KIR-HLA combination and ulcerative colitis and Crohn's disease in a Japanese population," PLoS One, vol. 13 no. 4, article e0195778,DOI: 10.1371/journal.pone.0195778, 2018.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2020 Fereshteh Beigmohammadi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
Genetic studies have illustrated that killer cell immunoglobulin-like receptor (KIR) genes could participate in various autoimmune disorders. We aimed to clarify the role of KIR genes, HLA ligands, HLA-KIR interactions, and their genotypes in inflammatory bowel disease (IBD) susceptibility. The study population was composed of 183 IBD subjects, comprising 100 ulcerative colitis (UC) patients, 83 Crohn’s disease (CD) patients, and 274 healthy subjects. Polymerase chain reaction with sequence-specific primers (PCR-SSP) was used to evaluate the absence or presence of the 15 KIR genes, 5 HLA class I ligands, and 2 pseudogenes. We did not find any significant difference in allele frequency of KIRs and pseudogenes between IBD patients and healthy controls. In the case of HLA genes, there was a significant difference in HLA-B-Bw4Thr80 frequency between UC patients and healthy controls (
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
2 Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Rheumatology Expert Group (REG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
3 Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
4 Department of Gastroenterology and Hepatology, Tehran University of Medical Sciences, Tehran, Iran
5 Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran