Full text

Turn on search term navigation

Copyright © 2020 Zubair Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Heavy-tailed distributions play an important role in modeling data in actuarial and financial sciences. In this article, a new method is suggested to define new distributions suitable for modeling data with a heavy right tail. The proposed method may be named as the Z-family of distributions. For illustrative purposes, a special submodel of the proposed family, called the Z-Weibull distribution, is considered in detail to model data with a heavy right tail. The method of maximum likelihood estimation is adopted to estimate the model parameters. A brief Monte Carlo simulation study for evaluating the maximum likelihood estimators is done. Furthermore, some actuarial measures such as value at risk and tail value at risk are calculated. A simulation study based on these actuarial measures is also done. An application of the Z-Weibull model to the earthquake insurance data is presented. Based on the analyses, we observed that the proposed distribution can be used quite effectively in modeling heavy-tailed data in insurance sciences and other related fields. Finally, Bayesian analysis and performance of Gibbs sampling for the earthquake data have also been carried out.

Details

Title
On Modeling the Earthquake Insurance Data via a New Member of the T-X Family
Author
Ahmad, Zubair 1 ; Mahmoudi, Eisa 1   VIAFID ORCID Logo  ; Kharazmi, Omid 2 

 Department of Statistics, Yazd University, P.O. Box 89175-741, Yazd, Iran 
 Department of Statistics, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran 
Editor
Friedhelm Schwenker
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
16875265
e-ISSN
16875273
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2446483403
Copyright
Copyright © 2020 Zubair Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/