This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Delphinium of the Ranunculaceae family is widely distributed in the North temperate zone, with about 350 species worldwide. 173 species (150 endemic) of Delphinium are distributed in China [1]. Delphinium is composed of subgen. Delphinastrum, subgen. Delphinium, and subgen. Oligophyllon, in the world, of which subgen. Delphinastrum has the most species [2]. In China, there are 18 species of Delphinium used as folk medicine, which are used to treat bruises, rheumatism, toothache, and enteritis. In addition, four species of Delphinium can be used as soil pesticides for their effects of killing lice, mosquitoes, and fly larvae [3]. The main compounds of Delphinium are diterpenoid alkaloids, and most of them have physiological activities [4]. In addition, Delphinium also contains chemical constituents such as flavonoids and sterols. In recent years, with the development of analysis methods and increasing focus on Delphinium, more and more chemical constituents and pharmacological activities of Delphinium had been researched. In this paper, the chemical constituents and pharmacological effects of Delphinium were reviewed in order to improve the development and utilization of the Delphinium resources.
2. Chemical Constituents
According to the research studies, the alkaloids are the main constituents with physiological activities in Delphinium and diterpenoid alkaloids are the most characteristic constituents with toxicity [5]. In addition, flavonoids and sterols are also present [6].
2.1. Diterpenoid Alkaloids
Diterpenoid alkaloids are derived from the amination of tetracycline diterpenoids or pentacyclic diterpenoids to heterocyclic systems containing β-aminoethanol, methylamine, or ethylamine nitrogen atoms [7]. There are abundant diterpenoid alkaloids in Delphinium, which can be classified into C-18 diterpenoid alkaloids, C-19 diterpenoid alkaloids, and C-20 diterpenoid alkaloids according to the carbon skeleton configuration [5]. Characteristic quaternary carbon signal and substituent signal are important information to distinguish different diterpene alkaloids.
C-18 diterpenoid alkaloids are the diterpenoid alkaloids whose C-18 are mostly substituted by C(4)-H/OH or the ester group, and a few of them contain 3,4-epoxide. According to the oxygen-containing groups on C-7, they can be sorted into two types (Figure 1): lappacinitine-type and ranaconitine-type, and C-7 of the ranaconitine-type has an oxygen-substituent group. C4 (δc 30–40, s), C8 (δc 73–84, s), and C11 (δc 47–55, s) are C-18’s characteristic signals [8]. Characteristic signal of the ranaconitine-type on C-7 is at δc 91–93 (s), and the characteristic signal of the lappacinitine-type on C-7 is at δc 45–48 (s).
[figure omitted; refer to PDF]
Most C-19 diterpene alkaloids are natural diterpenoid alkaloids and belong to pentacyclic diterpene alkaloids. According to the oxygen-containing groups on C-7 and the difference of skeleton, they can be classified into six types (Figure 2): lycoctonine-type, aconitine-type, 7,17-seco type (δc8 137–139, s; δc10 48–49, s; δc14 216–218, s), lactone-type, pyro-type (δc8,15 146–147, s), and rearranged-type (δc8 40–55, s; δc10 44–45, s; δc14 210–211, s) [8]. The majority of C-19 diterpenoid alkaloids are lycoctonine-type and aconitine-type. The differences between them are that C-7 (δc 87–93) of the lycoctonine-type has an oxygen-substituent group and others do not have [9]. And, C-19 diterpenoid alkaloids isolated from Delphinium are mostly lycoctonine-type [10]. C-19 diterpene alkaloids contain oxygen substituent (δH3.0–5.0; δc 70–90) and methoxy substituent (δH3.2–3.6, s; δc 55–59, q). C4 (δc 37–41, s), C8, and C11 (δc 47–51, s) are C-19 characteristic signals [8].
[figure omitted; refer to PDF]
C-20 diterpenoid alkaloids are tetracyclic diterpenes with a carbon skeleton of 20 carbon atoms and have a trans-a-ring alkaloid that connects C-19 to C-20 in N-ethyl or N-β-hydroxyl ethyl [11]. Compared with C-18 and C-19, C-20 diterpene alkaloid skeletons are complex, and most of them have exocyclic double bond structures. At present, 22 types of C-20 diterpenoid alkaloids were found [12]. The C-20 diterpenoid alkaloids isolated from Delphinium mainly belong to atisine-type, veatchine-type, hetisine-type, hetidine-type, denudatine-type, delnudine-type [13], and vakognavine-type (Figure 3) [14, 15]. C4 (δc 30–40, s), C8 (δc 30–50, s), C11 (δc 30–40, s), C16 (δc-143, s), and C17 (δH-5, brs; δc-110, t) are C-20’s characteristic signals. C6 (δc 17–20, s), C7 (δc 31–35, s), C10 (δc 36–40, s), C14 (δc 25–26, s), and C20 (δc 50–54, s) are characteristic signals of atisine-type, and C6 (δc −24, s), C7 (δc −43, s), C10 (δc 48–51, s), C14 (δc 36–39, s), and C20 (δc −69, s) are characteristic signals of hetidine-type [16].
[figure omitted; refer to PDF]
At present, 155 alkaloids were isolated from Delphinium, and the details are shown in Tables 1–3 and Figures 4–6. Based on the references listed in Tables 1–3, it can be summarized that D. anthriscifolium varietas and D. elatum and its varietas have been further studied in chemistry.
Table 1
C-18 diterpenoid alkaloids isolated from Delphinium.
No. | Compound | Type | Source | Molecular formula | Reference |
1 | Anthriscifolcine A | Ranaconitine | D. anthriscifolium var. savatieri | C26H38NO7 | [17] |
2 | Anthriscifolcine B | Ranaconitine | D. anthriscifolium var. savatieri | C24H37NO6 | [17] |
3 | Anthriscifolcine C | Ranaconitine | D. anthriscifolium var. savatieri | C25H37NO7 | [17] |
4 | Anthriscifolcine D | Ranaconitine | D. anthriscifolium var. savatieri | C26H39NO7 | [17] |
5 | Anthriscifolcine E | Ranaconitine | D. anthriscifolium var. savatieri | C24H37NO6 | [17] |
6 | Anthriscifolcine F | Ranaconitine | D. anthriscifolium var. savatieri | C25H37NO8 | [18] |
7 | Anthriscifolcine G | Ranaconitine | D. anthriscifolium var. savatieri | C25H37NO7 | [18] |
8 | Naviconine | Lappacinitine | D. naviculare var. lasiocarpum W. T. Wang. | C31H40N2O9 | [19] |
9 | Anthriscifolcone A | Ranaconitine | D. anthriscifolium var. majus | C27H39NO8 | [20] |
10 | Anthriscifolcone B | Ranaconitine | D. anthriscifolium var. majus | C23H33NO7 | [20] |
11 | Grandifline A | Ranaconitine | D. grandiflorum Linn | C22H33NO7 | [21] |
12 | Tuguaconitine | Ranaconitine | D. grandiflorum | C23H35NO7 | [22] |
13 | Linearilin | Ranaconitine | D. linearilobum (Trautv.) N. Busch | C24H39NO8 | [23] |
14 | Anthriscifoltine A | Ranaconitine | D. anthriscifolium var. majus | C30H45NO9 | [24] |
15 | Anthriscifoltine B | Ranaconitine | D. anthriscifolium var. majus | C28H43NO8 | [24] |
16 | Anthriscifoltine C | Ranaconitine | D. anthriscifolium var. majus | C29H43NO9 | [25] |
17 | Anthriscifoltine D | Ranaconitine | D. anthriscifolium var. majus | C32H41NO9 | [25] |
18 | Anthriscifoltine E | Ranaconitine | D. anthriscifolium var. majus | C25H35NO8 | [25] |
19 | Anthriscifoltine F | Ranaconitine | D. anthriscifolium var. majus | C23H33NO7 | [25] |
20 | Anthriscifoltine G | Ranaconitine | D. anthriscifolium var. majus | C23H31NO7 | [25] |
Table 2
C-19 diterpenoid alkaloids isolated from Delphinium.
No. | Compound | Type | Source | Molecular formula | Reference |
21 | Anthriscifoldine A | Lycoctonine | D. anthriscifolium var. savatieri | C25H37NO7 | [17] |
22 | Anthriscifoldine B | Lycoctonine | D. anthriscifolium var. savatieri | C25H39NO7 | [17] |
23 | Anthriscifoldine C | Lycoctonine | D. anthriscifolium var. savatieri | C27H41NO7 | [17] |
24 | Naviculine | Lycoctonine | D. naviculare var. lasiocarpum W. T. Wang. | C26H42NO7+ | [19] |
25 | Naviconitine | Aconitine | D. naviculare var. lasiocarpum W. T. Wang. | C34H46N2O9 | [19] |
26 | Grandifline B | Lycoctonine | D. grandiflorum Linn | C25H39NO8 | [21] |
27 | Grandifline C | Lycoctonine | D. grandiflorum Linn | C25H40NO7+ | [21] |
28 | Olivimine | Lycoctonine | D. grandiflorum | C24H37NO7 | [22] |
29 | Hohenackeridine | Lycoctonine | D. grandiflorum | C22H31NO7 | [22] |
30 | 14-O-Methyldelphinifoline | Lycoctonine | D. grandiflorum | C24H39NO7 | [22] |
31 | N-Deethyldelphatine | Lycoctonine | D. grandiflorum | C24H39NO7 | [22] |
32 | Browniine | Lycoctonine | D. grandiflorum | C25H41NO7 | [22] |
33 | 14-Dehydrobrowniine | Lycoctonine | D. grandiflorum | C25H39NO7 | [22] |
34 | Linearilobin | Aconitine | D. linearilobum (Trautv.) N. Busch | C37H46N2O9 | [23] |
35 | Melpheline | Lycoctonine | D. elatum | C24H37NO6 | [26] |
36 | 19-Oxoisodelpheline | Lycoctonine | D. elatum | C25H37NO7 | [26] |
37 | N-Deethyl-19-oxoisodelpheline | Lycoctonine | D. elatum | C23H33NO7 | [26] |
38 | N-Deethyl-19-oxodelpheline | Lycoctonine | D. elatum | C23H33NO7 | [26] |
39 | N-Formyl-4,19-secopacinine | Lycoctonine | D. elatum cv. Pacific Giant | C25H37NO7 | [27] |
40 | Iminoisodelpheline | Lycoctonine | D. elatum cv. Pacific Giant | C23H33NO6 | [27] |
41 | Iminodelpheline | Lycoctonine | D. elatum cv. Pacific Giant | C23H33NO6 | [27] |
42 | Iminopaciline | Lycoctonine | D. elatum cv. Pacific Giant | C24H35NO6 | [27] |
43 | 6-Dehydroeladine | Lycoctonine | D. elatum cv. Pacific Giant | C24H35NO6 | [27] |
44 | Elapacidine | Lycoctonine | D. elatum cv. Pacific Giant | C24H37NO6 | [27] |
45 | Yunnanensine A | Rearranged-type | D. yunnanense | C37H48N2O9 | [28] |
46 | Iliensine A | Lycoctonine | D. iliense | C40H55NO14 | [29] |
47 | Iliensine B | Lycoctonine | D. iliense | C26H41NO8 | [29] |
48 | Pseudophnine A | Lycoctonine | D. pseudoaemulans C. Y. Yang et B. Wang | C25H40NO7+ | [30] |
49 | Pseudophnine B | Lycoctonine | D. pseudoaemulans C. Y. Yang et B. Wang | C24H38NO7+ | [30] |
50 | Pseudophnine C | Lycoctonine | D. pseudoaemulans C. Y. Yang et B. Wang | C27H42NO7+ | [30] |
51 | Pseudophnine D | Lycoctonine | D. pseudoaemulans C. Y. Yang et B. Wang | C26H40NO7+ | [30] |
52 | Pseudorenines A | Lycoctonine | D. pseudoaemulans C. Y. Yang et B. Wang | C39H53N2O11+ | [30] |
53 | Pseudorenines B | Lycoctonine | D. pseudoaemulans C. Y. Yang et B. Wang | C39H53N2O11+ | [30] |
54 | Pseudonidine A | Lycoctonine | D. pseudoaemulans C. Y. Yang et B. Wang | C24H35NO7 | [30] |
55 | Pseudonidine B | Lycoctonine | D. pseudoaemulans C. Y. Yang et B. Wang | C29H45NO8 | [30] |
56 | Navicularine | Lycoctonine | D. naviculare var. lasiocarpum | C27H43NO8 | [31] |
57 | Shawurensine | Lycoctonine | D. shawurense W. T. Wang | C37H52N2O11 | [32] |
58 | Sharwuphinine B | Lycoctonine | D. shawurense W. T. Wang | C26H40NO7+ | [33] |
59 | Ajacisine A | Lycoctonine | D. ajacis L. | C31H44N2O9 | [34] |
60 | Ajacisine B | Lycoctonine | D. ajacis L. | C32H46N2O9 | [34] |
61 | Ajacisine C | Lycoctonine | D. ajacis L. | C31H42N2O8 | [34] |
62 | Ajacisine D | Lycoctonine | D. ajacis L. | C30H42N2O8 | [34] |
63 | Ajacisine E | Lycoctonine | D. ajacis L. | C30H42N2O8 | [34] |
64 | Caerudelphinine A | Lycoctonine | D. caeruleum Jacq.ex Camb | C25H39NO8 | [35] |
65 | Grandiflodine B | Lycoctonine | D. grandiflorum | C33H48N2O10 | [36] |
66 | Majusine A | Lycoctonine | D. majus W. T. Wang | C32H44N2O9 | [37] |
67 | Majusine B | Lycoctonine | D. majus W. T. Wang | C24H37NO6 | [37] |
68 | Majusine C | Lycoctonine | D. majus W. T. Wang | C26H37NO8 | [37] |
69 | Davidisine A | Lycoctonine | D. davidii Franch. | C23H37NO7 | [38] |
70 | Davidisine B | Lycoctonine | D. davidii Franch. | C24H37NO8 | [38] |
71 | Laxicymine 1 | Lycoctonine | D. laxicymosum var. pilostachyum W. T. Wang | C24H35NO7 | [39] |
72 | Laxicymisine 2 | Lycoctonine | D. laxicymosum var. pilostachyum W. T. Wang | C24H37NO7 | [39] |
73 | Laxicyminine 3 | Lycoctonine | D. laxicymosum var. pilostachyum W. T. Wang | C24H35NO6 | [39] |
74 | Tiantaishansine | Lycoctonine | D. tiantaishanense W. J. Zhang et G. H. Chen | C22H33NO7 | [40] |
75 | Tiantaishannine | Lycoctonine | D. tiantaishanense W. J. Zhang et G. H. Chen | C26H39NO7 | [40] |
76 | Tiantaishanmine | Lycoctonine | D. tiantaishanense W. J. Zhang et G. H. Chen | C25H35NO7 | [40] |
77 | Trifoliolasine A | Lycoctonine | D. trifoliolatum Finet et Gagnep | C35H50N2O9 | [41] |
78 | Trifoliolasine B | Lycoctonine | D. trifoliolatum Finet et Gagnep | C36H52N2O9 | [41] |
79 | Trifoliolasine C | Lycoctonine | D. trifoliolatum Finet et Gagnep | C40H57N3O11 | [41] |
80 | 14-Demethyl-14-isobutyrylanhweidelphinine | Lycoctonine | D. pentagynum Lam. | C38H48N2O11 | [42] |
81 | 14-Demethyl-14-acetylanhweidelphinine | Lycoctonine | D. pentagynum Lam. | C36H44N2O11 | [42] |
82 | Giraldine G | Lycoctonine | D. giraldii | C40H57N3O11 | [43] |
83 | Giraldine H | Lycoctonine | D. giraldii | C41H59N3O11 | [43] |
84 | Giraldine I | Aconitine | D. giraldii | C22H35NO3 | [43] |
85 | Giraldine D | Lycoctonine | D. giraldii | C24H37NO6 | [44] |
86 | Giraldine E | Lycoctonine | D. giraldii | C25H39NO7 | [44] |
87 | Giraldine F | Lycoctonine | D. giraldii | C23H33NO6 | [44] |
88 | Campylocine | Lycoctonine | D. campylocentrum Maxim. | C25H37NO7 | [45] |
89 | Campylotine | Lycoctonine | D. campylocentrum Maxim. | C24H37NO7 | [45] |
90 | Davidiisine A | Lycoctonine | D. davidii Franch | C23H37NO7 | [46] |
91 | Davidiisine B | Lycoctonine | D. davidii Franch | C24H37NO8 | [46] |
92 | Ajadelphine | Lycoctonine | D. honanense var. piliteram W. T. Wang | C25H39NO7 | [47] |
93 | Aconine | Aconitine | D. honanense var. piliteram W. T. Wang | C25H41NO9 | [47] |
94 | Siwanine E | Lycoctonine | D. honanense var. piliteram W. T. Wang | C28H39NO9 | [47] |
95 | Grandiflorine III | Aconitine | D. grandiflorum L. | C26H39NO9 | [48] |
96 | Isotalatizidine | Aconitine | D. grandiflorum L. | C23H37NO5 | [48] |
97 | 14-O-Methyl isotalatizidine | Aconitine | D. grandiflorum L. | C24H39NO5 | [48] |
98 | Anthranoyllycoctonine | Lycoctonine | D. grandiflorum L. | C32H46N2O8 | [48] |
99 | Deoxylycoctonine | Lycoctonine | D. grandiflorum L. | C26H43NO6 | [48] |
100 | Umbrosine | Lycoctonine | D. grandiflorum L. | C24H39NO6 | [48] |
101 | Anthriscifolrine A | Lycoctonine | D. anthriscifolium var. majus | C25H37NO6 | [49] |
102 | Anthriscifolrine B | Lycoctonine | D. anthriscifolium var. majus | C27H41NO8 | [49] |
103 | Anthriscifolrine C | Lycoctonine | D. anthriscifolium var. majus | C27H41NO9 | [49] |
104 | Anthriscifolrine D | Lycoctonine | D. anthriscifolium var. majus | C27H39NO9 | [49] |
105 | Anthriscifolrine E | Lycoctonine | D. anthriscifolium var. majus | C26H39NO8 | [49] |
106 | Anthriscifolrine F | Lycoctonine | D. anthriscifolium var. majus | C25H39NO7 | [49] |
107 | Tianshanisine A | Lycoctonine | D. tianshanicum W. T. Wang | C30H41NO6 | [50] |
108 | Tianshanisine B | Lycoctonine | D. tianshanicum W. T. Wang | C23H37NO5 | [50] |
109 | Tianshanisine C | Lycoctonine | D. tianshanicum W. T. Wang | C25H39NO6 | [50] |
110 | Tianshanisine D | Lycoctonine | D. tianshanicum W. T. Wang | C23H35NO5 | [50] |
111 | Tianshanisine E | Lycoctonine | D. tianshanicum W. T. Wang | C23H35NO7 | [50] |
112 | Elapacigine | Lycoctonine | Delphinium elatum cv. Pacific Giant | C23H31NO6 | [51] |
113 | N-Deethyl-N-formylpaciline | Lycoctonine | Delphinium elatum cv. Pacific Giant | C25H37NO7 | [51] |
114 | N-Deethyl-N-formylpacinine | Lycoctonine | Delphinium elatum cv. Pacific Giant | C24H33NO7 | [51] |
115 | N-Formyl-4,19-secoyunnadelphinine | Lycoctonine | Delphinium elatum cv. Pacific Giant | C24H35NO7 | [51] |
Table 3
C-20 diterpenoid alkaloids isolated from Delphinium.
No. | Compound | Type | Source | Molecular formula | Reference |
116 | Yunnanensine B | Hetisine | D. yunnanense | C28H37NO7 | [28] |
117 | Yunnanensine C | Hetisine | D. yunnanense | C26H35NO6 | [28] |
118 | Grandiflodine A | Hetisine | D. grandiflorum | C22H28N2O3 | [36] |
119 | Majusimine A | Vakognavine | D. majus W. T. Wang | C45H47NO15 | [37] |
120 | Majusimine B | Vakognavine | D. majus W. T. Wang | C43H45NO14 | [37] |
121 | Majusimine C | Vakognavine | D. majus W. T. Wang | C41H43NO13 | [37] |
122 | Majusimine D | Vakognavine | D. majus W. T. Wang | C34H37NO12 | [37] |
123 | Majusidine A | Hetisine | D. majus W. T. Wang | C22H29NO5 | [37] |
124 | Majusidine B | Hetisine | D. majus W. T. Wang | C25H33NO4 | [37] |
125 | Tiantaishandine | Hetisine | D. tiantaishanense W. J. Zhang et G. H. Chen | C29H33NO5 | [40] |
126 | 2-Dehydrodeacetylhetero phylloidine | Hetidine | D. pentagynum Lam. | C21H25NO3 | [42] |
127 | Davidiisine C | Hetidine | D. davidii Franch | C21H33NO4 | [46] |
128 | 12-Epinapelline | Veatchine | D. honanense var. piliteram W. T. Wang | C22H33NO3 | [47] |
129 | Anthriscifolsine B | Hetisine | D. anthriscifolium var. majus | C24H31NO7 | [49] |
130 | Anthriscifolsine C | Hetisine | D. anthriscifolium var. majus | C30H43NO7 | [49] |
131 | Anthriscifolmine A | Denudatine | D. anthriscifolium var. savatieri | C25H37NO5 | [52] |
132 | Anthriscifolmine B | Denudatine | D. anthriscifolium var. savatieri | C25H37NO6 | [52] |
133 | Anthriscifolmine C | Hetisine | D. anthriscifolium var. savatieri | C29H31NO7 | [52] |
134 | Trichodelphinines A | Hetisine | D. tichophorum Franch | C26H35NO5 | [53] |
135 | Trichodelphinines B | Hetisine | D. tichophorum Franch | C24H33NO4 | [53] |
136 | Trichodelphinines C | Hetisine | D. tichophorum Franch | C27H37NO5 | [53] |
137 | Trichodelphinines D | Hetisine | D. tichophorum Franch | C24H31NO5 | [53] |
138 | Trichodelphinines E | Hetisine | D. tichophorum Franch | C26H33NO5 | [53] |
139 | Trichodelphinines F | Delnudine | D. tichophorum Franch | C28H33NO4 | [53] |
140 | Flexiosine | Hetisine | D. flexuosum M. Bieb. | C36H43NO9 | [54] |
141 | Tatsienenseine A | Vakognavine | D. tatsienense Franch | C43H45NO13 | [55] |
142 | Tatsienenseine B | Hetisine | D. tatsienense Franch | C24H31NO4 | [55] |
143 | Tatsienenseine C | Hetisine | D. tatsienense Franch | C24H31NO3 | [55] |
144 | 13-(2-Methyl butyryl) azitine | Atisine | D. scabriflorum | C25H37NO3 | [56] |
145 | Tatsienensine | Hetisine | D. tatsienense | C19H25NO2 | [57] |
[figures omitted; refer to PDF]
[figures omitted; refer to PDF]
[figures omitted; refer to PDF]
2.2. Amide Alkaloids
The typical groups of amide alkaloids are acyl groups. 9 amide alkaloids were isolated from Delphinium, and the details are shown in Table 4 and Figure 7.
Table 4
Amide alkaloids isolated from Delphinium.
No. | Compound | Type | Source | Molecular formula | Reference |
146 | Benzoic acid 2-[(4-methoxy-2-methyl-1,4-dioxobutyl) amino]-methyl ester | Amide | D. grandiflorum Linn | C14H17NO5 | [21] |
147 | N-Cinnamoyl-2-phenylethylamine | Amide | D. grandiflorum L. | C17H17NO | [48] |
148 | Delamide A | Amide | D. brunonianum | C13H13NO4 | [58] |
149 | Delamide B | Amide | D. brunonianum | C14H17NO6 | [58] |
150 | Delamide C | Amide | D. brunonianum | C13H15NO5 | [58] |
151 | Delamide D | Amide | D. brunonianum | C13H15NO5 | [58] |
152 | Delamide E | Amide | D. brunonianum | C13H15NO5 | [58] |
153 | Benzoic,4-[(3,4-dimethoxybenzoyl) amino]-3-hydroxy-methyl ester | Amide | D. brunonianum Royle | C17H17NO6 | [59] |
154 | Benzoic acid 2-[(4-methoxy-3-methyl-1,4-dioxobutyl) amino]-methyl ester | Amide | D. brunonianum Royle | C14H17NO5 | [59] |
2.3. Other Alkaloids
Except diterpene alkaloids and amide alkaloids, one other alkaloid (No.155, anthriscifolsine A, C29H31NO7, [49]) was isolated from D. anthriscifolium var. majus. The structure is shown in Figure 8.
[figure omitted; refer to PDF]2.4. Other Compounds
Delphinium also contains compounds such as flavonoids and sterols. In recent years, other compounds isolated from Delphinium had also been reported, and a total of 13 nonalkaloids (Table 5 and Figure 9) were isolated from Delphinium.
Table 5
Other compounds isolated from Delphinium.
No. | Compound | Type | Source | Molecular formula | Reference |
156 | β-Carotene | D. grandiflorum Linn | C34H56NO4 | [21] | |
157 | 3,5-Dihydroxy-4′-methoxyflavon-7-yl-O-β-D-glucopyranosyl-(1⟶4)-α-L-rhamnopyranoside | Flavonoid | D. grandiflorum Linn | C21H18NO8 | [21] |
158 | β-D-Galactopyranoside,4-hydroxyphenyl | D. grandiflorum Linn | C11H12NO5 | [21] | |
159 | β-Sitosterol | Sterol | D. honanense var. piliteram W. T. Wang | C29H50O | [47] |
160 | 4′,7-Dimethoxy-5-hydroxyflavone | Flavonoid | D. grandiflorum L. | C17H14O5 | [48] |
161 | Kaempferol-7-O-α-L-pyranorhamnoside | Flavonoid | D. grandiflorum L. | C21H20O10 | [60] |
162 | 5,7,3′,4′-Tetrahydroxy-8-methoxyflavone | Flavonoid | D. grandiflorum L. | C16H12O7 | [60] |
163 | Tachioside | Phenolics | D. grandiflorum L. | C13H18O8 | [60] |
164 | 6-Methoxycoumarin | Coumarin | D. grandiflorum L. | C10H8O3 | [60] |
165 | para-Hydroxybenzoic acid | D. brunonianum Royle | C7H6O3 | [59] | |
166 | Benzoic acid | D. brunonianum Royle | C7H6O2 | [59] | |
167 | Cinnamic acid | D. brunonianum Royle | C9H8O2 | [59] | |
168 | Dibutyl phthalate | D. brunonianum Royle | C16H22O4 | [59] |
3. Biological Activities
Plants of Delphinium are used with whole grass as medicine. According to the ancient Tibetan medicine Jingzhubencao, plants of Delphinium had analgesic, anti-inflammatory, and insecticidal effects [9]. Literature studies showed that plants of Delphinium have many pharmacological effects including antibacterial, antiepileptic, detoxification, and Alzheimer’s disease treatment. In this section, this paper reviews the research studies on the antibacterial, analgesic, anti-inflammatory, antidepressant, and anticancer effects of Delphinium.
3.1. Antibacterial Activity
Hari et al. found that anthriscifoldine C (5.0 mg/mL) from D. brunonianum had a good inhibiting effect on Bacillus subtilis, Escherichia coli, and Salmonella flexnari, and its MIC were 24.0 µM, 23.4 µM, and 24.2 µM, respectively, in vitro [61]. Ren et al. carried out the bacteriostatic test on the total alkaloids extracted from the roots of Delphinium and found that the MIC of the total alkaloids extracted on S. aureus and Aspergillus niger was 50 mg/mL in vitro [62].
3.2. Analgesic Activity
Zaheer et al. used the eddy current hot plate method and the tail flick reaction method to evaluate the analgesic activity of D. denudatum on Wistar albino rats. The experimental results showed that the response time of rats given D. denudatum ethanol extract and methanol fraction was longer than that of the propylene glycol group, and the effects of the high doses of the ethanol extract (600 mg/kg) and methanol fraction (400 mg/kg) were equal to that of the positive control group, indicating that D. denudatum had a good analgesic activity [63]. Nesterova et al. investigated chronic immune inflammation which was induced by injecting 0.1 mL of complete Freund’s in outbred male rats, and the results showed that the 40% alcohol extract (0.12 mL/kg) and total alkaloids (0.05 mg/kg) of Delphinium could significantly reduce the frequency of joint swelling in outbred male rats. On the 14th day, the rats in the total alkaloids (0.05 mg/kg) treatment group of Delphinium had no pain when their joints were bended, which indicated a good analgesic effect of Delphinium [64]. Through the hot-plate method and the acetic acid writhing method, Suslov et al. found that the water extract (0.5 g/kg) and the alcohol extract (0.25 g/kg) of D. grandiflorum L. var. leiocarpum could prolong the pain threshold of mice, which was similar to the effect of acetaminophen (0.2 g/kg), and performed a good analgesic effect [65].
3.3. Anti-Inflammatory Activity
Nesterova et al. found that the alkaloids and flavonoids in Delphinium had a good inhibitory effect on the inflammatory response through the experiment of the mice peritonitis model in the inflammatory exudation phase in vivo. Aqueous fraction of flavonoids (25.0 mg/kg) had a good therapeutic effect on the edema reaction caused by histamine (0.1%), and alkaloids (0.05 mg/kg) showed a good anti-inflammatory effect on the inflammatory reaction caused by 5-hydroxytryptamine (0.5 mg/kg) [66]. Andreeva and Liu established an acute inflammation model with increased capillary permeability induced by acetic acid in ICR male mice, and the results showed that the high- (1.5 g/kg), medium- (1.0 g/kg), and low-dose groups (0.5 g/kg) of the total flavonoids extracted from D. grandiflorum with ethanol had good anti-inflammatory activity [67].
3.4. Spiritual Influence
3.4.1. Antidepressant Activity
Ebrahimzadeh et al. demonstrated that the extract (250 mg/kg, 500 mg/kg, and 1000 mg/kg) of D. elbursense had good antidepressant activity by using the forced swimming experiment and the tail suspension experiment in mice. The results revealed that the extract at 1000 mg/kg had the same inhibitory activity as imipramine at 15 mg/kg in the control group [68].
3.4.2. Antianxiety Activity
Mohammad et al. found that the D. denudatum extract (200 and 400 mg/kg) had a certain therapeutic effect on anxiety in Wistar albino rats and a better synergistic effect toward the Amaranthus spinosus extract (100 mg/kg) [69].
3.5. Anticancer Activity
Zheng et al. used the MTT method to determine the antihepatoma activity of the ethyl acetate extract from D. caeruleum in vitro. After giving 25, 50, 100, and 200 μg/mL of HepG2 cells for 12, 24, and 48 hours, they found that the ethyl acetate extract from D. caeruleum had good antiliver cancer activity and had a good dose-effect and time-effect relationship on HepG2 cells and had less toxicity to L-02 cells. IC50 of the ethyl acetate extract from D. caeruleum on HepG2 cells was 28.8 μg/mL [70].
3.6. Antipulmonary Fibrosis Activity
In the study on pulmonary fibrosis induced by bleomycin in SD rats, Lin et al. found that after 14 days of gavage with 4 g/kg, 2 g/kg, and 1 g/kg extracts of D. trichophorum, the expression of collagen in the tissues during the pathological process of pulmonary fibrosis could be inhibited and the symptoms of pulmonary fibrosis in rats could be improved [71].
3.7. Antifeedant Activity
Shan et al. determined the antifood activity of 12 alkaloids isolated from D. naviculare var. lasiocarpum on Spodoptera exigua, and the results showed that the chemical shawurensine had a strong antifeedant activity with an EC50 of 0.45 mg/cm2 [31]. González and Guadaño extracted 5 alkaloids from Delphinium for activity determination against Spodoptera littoralis and Leptinotarsa decemlineata by choice feeding assays, and the results showed that cardiopetamine had the strongest activity against S. littoralis with the EC50 of 5.48 nmol/cm2 and 15-acetylcardiopetamine had the strongest activity against L. decemlineata with the EC50 of 12.86 nmol/cm2 [72].
3.8. Antiparasite Activity
Reina et al. found that delphigraciline extracted from D. gracile had antileishmanicidal activity in vitro, and its IC50 was 7.3 μg/mL [73].
4. Summary and Analysis
Delphinium is rich in germplasm resources and has a wide range of pharmacological effects. In recent years, 168 compounds were isolated from plants of Delphinium, including 155 alkaloids and 13 nonalkaloids. The alkaloids in the genus Delphinium are mainly diterpene alkaloids, including 20 C-18 diterpenoid alkaloids, 95 C-19 diterpenoid alkaloids, and 30 C-20 diterpenoid alkaloids. The study of chemical composition for Delphinium mainly focuses on D. anthriscifolium varietas, D. elatum, D. grandiflorum, D. brunonianum, D. tiantaishanense, and D. pseudoaemulans. Although there are many research studies, the pharmacological effects on the antibacterial, analgesic, anti-inflammatory, antidepressant, anticancer, antipulmonary fibrosis, antifeedant, and antiparasite effects of Delphinium are mainly on the crude extracts and few on compounds.
5. Future Prospects
The genus Delphinium is rich in new and novel compounds, but the current research is only focused on several species. In the future, more new compounds should be investigated from other species in depth. The pharmacological effects of Delphinium are extensive, but the current research is limited to extracts, so it is necessary to focus on the effects of the compounds from Delphinium and the structure-activity relationship in the future.
Authors’ Contributions
Sitan Chen and Lijun Meng contributed equally to this work.
Acknowledgments
This work was supported by the Basic Project in Science and Technology Agency of Kaifeng City (1908007).
[1] W. C. Wang, J. W. Michael, Flora of China, pp. 223-274, 2001.
[2] L. H. Shan, Studies on Diterpenoid Alkaloids Constituents of Four Herb Aconitum, 2017.
[3] Flora of China Editorial Committee of Chinese Academy of Sciences, Flora Reipublicae Popularis Sinicae, 1979.
[4] F. P. Wang, Q. H. Chen, X. Y. Liu, "Diterpenoid alkaloids," Natural Product Reports, vol. 27 no. 4,DOI: 10.1039/b916679c, 2010.
[5] Teaching and Research Office of Organic Chemistry, Department of Chemistry, Nanjing University, Organic chemistry, 1988.
[6] H. X. Kuang, Chemistry of Chinese Materia Medica, 1998.
[7] F. P. Wang, Alkaloids Chemistry, pp. 410-429, 2008.
[8] T. P. Yin, Z. H. Luo, L. Cai, Z. T. Ding, "Research progress and NMR spectral features of natural C 19 -diterpenoid alkaloids," Chinese Journal of Magnetic Resonance, vol. 36 no. 01, pp. 113-126, 2019.
[9] Q. Zhang, B. Xu, Q. Jia, Y. M. Li, "Advances in chemical constituents and pharmacological activities of C18 diterpenoid alkaloids," Chinese Traditional Patent Medicine, vol. 38 no. 5, pp. 1109-1114, 2016.
[10] S. M. Xie, C. Z. Lin, D. W. Zeren, "Review of phytochemical and pharmacological researches of medicinal plants from Genus Delphinium of Rannuculaceae," Pharmacy Today, vol. 21 no. 4, pp. 197-201, 2011.
[11] S. J. Wu, Chemical Constituents of Modern Medicinal Herb, pp. 936-948, 2002.
[12] F.-P. Wang, X.-T. Liang, "C20-diterpenoid alkaloids," The Alkaloids: Chemistry and Biology, vol. 59,DOI: 10.1016/s0099-9598(02)59008-8, 2002.
[13] K. B. m. Birnbaum, "X-ray crystal structure of delnudine, a novel alkaloid," Tetrahedron Letters, vol. 10 no. 60, pp. 5245-5246, DOI: 10.1016/s0040-4039(01)88934-6, 1969.
[14] R. Y. Li, F. Feng, J. H. Liu, "Advance in studies on structure-activity relationships of C 20 -Diterpenoid alkaloids," Strait Pharmaceutical Journal, vol. 25 no. 12, 2013.
[15] Y. Liang, J. L. Wu, X. Li, "Anti-cancer and anti-inflammatory new vakognavine-type alkaloid from the roots of Aconitum carmichaelii," Tetrahedron Letters, vol. 57 no. 52, pp. 5881-5884, DOI: 10.1016/j.tetlet.2016.11.065, 2016.
[16] L. S. Ding, Y. Z. Chen, "Natural C 20 diterpene alkaloids," Natural Product Research and Development, vol. 2 no. 3, pp. 74-88, 1990.
[17] L. Song, X.-X. Liang, D.-L. Chen, X.-X. Jian, F.-P. Wang, "New C18-Diterpenoid Alkaloids from Delphinium anthriscifolium var. savatieri," Chemical & Pharmaceutical Bulletin, vol. 55 no. 6, pp. 918-921, DOI: 10.1248/cpb.55.918, 2007.
[18] L. Jian, X.-Y. Liu, Q.-H. Chen, "New C19- and C18-Diterpenoid Alkaloids from Delphinium anthriscifolium var. savatieri," Chemical & Pharmaceutical Bulletin, vol. 57 no. 2, pp. 158-161, DOI: 10.1248/cpb.57.158, 2009.
[19] W. J. Wang, B. Zhao, J. Y. Zhao, "Three new diterpenoid alkaloids from Delphinium naviculare var. lasiocarpum W. T. Wang," Phytochemistry Letters, vol. 33, pp. 12-16, DOI: 10.1016/j.phytol.2019.06.009, 2019.
[20] S. Wang, X. L. Zhou, X. M. Gong, "Norditerpenoid alkaloids from Delphinium anthriscifolium," Journal of Asian Natural Products Research, vol. 18 no. 2,DOI: 10.1080/10286020.2015.1056522, 2015.
[21] Z. D. Nan, Studies on the Chemical Constituents of Delphinium grandifloru linn, 2010.
[22] Z. D. Nan, H. Z. Ren, X. A. Li, "Separation and identification of diterpenoid alkaloids from Delphinium grandiflorum," Chinese Journal of Experimental Traditional Medical Formulae, vol. 23 no. 24, pp. 71-77, 2017.
[23] U. Kolak, M. Oeztuerk, F. Oezgoekce, "Norditerpene alkaloids from Delphinium linearilobum and antioxidant activity," Phytochemistry, vol. 67 no. 19, pp. 2170-2175, DOI: 10.1016/j.phytochem.2006.06.006, 2006.
[24] L. H. Shan, J. F. Zhang, L. Chen, "Two new C18-diterpenoid alkaloids from Delphinium anthriscifolium," Natural Product Communications, vol. 10 no. 12, pp. 2067-2068, DOI: 10.1177/1934578x1501001213, 2015.
[25] L.-H. Shan, J.-F. Zhang, F. Gao, S. Huang, X.-L. Zhou, "C18-Diterpenoid alkaloids from Delphinium anthriscifolium var. majus," Journal of Asian Natural Products Research, vol. 20 no. 5, pp. 423-430, DOI: 10.1080/10286020.2017.1335309, 2018.
[26] K. Huang, E. Asakawa, Y. Tosho, "Four new diterpenoid alkaloids from Delphinium elatum," Phytochemistry Letters, vol. 17, pp. 190-193, DOI: 10.1016/j.phytol.2016.06.009, 2016.
[27] K. Nakata, R. Chiba, R. Kanazawa, "Six new norditerpenoid alkaloids from Delphinium elatum," Phytochemistry Letters, vol. 12, pp. 79-83, DOI: 10.1016/j.phytol.2015.02.010, 2015.
[28] F. Z. Matsuoka, Q. H. Chen, F. P. Wang, "Diterpenoid alkaloids from Delphinium yunnanense," Helvetica Chimica Acta, vol. 94 no. 2, pp. 254-260, DOI: 10.1002/hlca.201000171, 2011.
[29] J.-F. Zhang, R.-Y. Dai, L.-H. Shan, "Iliensines A and B: two new C 19 -diterpenoid alkaloids from Delphinium iliense," Phytochemistry Letters, vol. 17, pp. 299-303, DOI: 10.1016/j.phytol.2016.08.014, 2016.
[30] W. J. Xu, B. Zhao, Z. Ruzi, "Norditerpenoid alkaloids from Delphinium pseudoaemulans C. Y. Yang et B. Wang," Phytochemistry, vol. 156, pp. 234-240, DOI: 10.1016/j.phytochem.2018.09.010, 2018.
[31] L. Shan, L. Chen, F. Gao, "Diterpenoid alkaloids from Delphinium naviculare var. lasiocarpum with their antifeedant activity on Spodoptera exigua," Natural Product Research, vol. 33 no. 22, pp. 3254-3259, DOI: 10.1080/14786419.2018.1475382, 2018.
[32] D. Y. Zhou, H. A. Aisa, S. K. Usmanova, “ Shawurensine, "Shawurensine, a new C19-diterpenoid alkaloid from Delphinium shawurense," Chemistry of Natural Compounds, vol. 43 no. 3, pp. 298-301, DOI: 10.1007/s10600-007-0109-y, 2007.
[33] B. Zhao, S. K. Usmanova, A. Yili, A. Kawuli, R. Abdulla, H. A. Aisa, "New C19-norditerpenoid alkaloid from Delphinium shawurense," Chemistry of Natural Compounds, vol. 51 no. 3, pp. 519-522, DOI: 10.1007/s10600-015-1328-2, 2015.
[34] L. Kawuli, Y. B. Zhang, L. Zhuang, "Diterpenoid alkaloids from Delphinium ajacis and their anti-RSV activities," Planta Medica, vol. 83 no. 1-2, pp. 111-116, DOI: 10.1055/s-0042-107252, 2016.
[35] C.-Z. Wang, Z.-J. Liu, Z.-D. Bairi, "A new diterpenoid alkaloid isolated from Delphinium caeruleum," Chinese Journal of Natural Medicines, vol. 15 no. 1, pp. 45-48, DOI: 10.1016/s1875-5364(17)30007-9, 2017.
[36] N.-H. Zhu, Y.-B. Zhang, W. Li, "Grandiflodines A and B, two novel diterpenoid alkaloids from Delphinium grandiflorum," RSC Advances, vol. 7 no. 39, pp. 24129-24132, DOI: 10.1039/c7ra02869e, 2017.
[37] F.-Z. Li, D.-L. Chen, Q.-H. Chen, "Diterpenoid alkaloids from Delphinium majus," Journal of Natural Products, vol. 72 no. 1, pp. 18-23, DOI: 10.1021/np800439a, 2009.
[38] X. X. Wang, D. L. Chen, F. P. Wang, "Two new C19-diterpenoid alkaloids from Delphinium davidii Franch," Chinese Chemical Letters, vol. 17 no. 11, pp. 1473-1476, 2007.
[39] P. Tang, D. L. Chen, Q. H. Chen, "Three new C19-diterpenoid alkaloids from Delphinium laxicymosum var. pilostachyum," Chinese Chemical Letters, vol. 18 no. 6, pp. 700-703, DOI: 10.1016/j.cclet.2007.04.026, 2007.
[40] J. Li, D.-L. Chen, X.-X. Jian, "New diterpenoid alkaloids from the roots of Delphinium tiantaishanense," Molecules, vol. 12 no. 3, pp. 353-360, DOI: 10.3390/12030353, 2007.
[41] X. L. Wang, Q. H. Chen, F. P. Wang, "New C19-diterpenoid alkaloids from Delphinium trifoliolatum," Chemical and Pharmaceutical Bulletin, vol. 52 no. 4, pp. 381-383, DOI: 10.1248/cpb.52.381, 2004.
[42] G. D. Jess, G. R. Juan, H. Werner, "Alkaloids from Delphinium pentagynum," Phytochemistry, vol. 65 no. 14, pp. 2123-2127, DOI: 10.1016/j.phytochem.2004.03.017, 2004.
[43] X.-L. Zhou, Q.-H. Chen, F.-P. Wang, "Three new C19-diterpenoid alkaloids from Delphinium giraldii," Chemical & Pharmaceutical Bulletin, vol. 52 no. 4, pp. 456-458, DOI: 10.1248/cpb.52.456, 2004.
[44] X. L. Zhou, Q. H. Chen, F. P. Wang, "Three new lycoctonine-type C19-diterpenoid alkaloids from Delphinium giraldii," Heterocycles, vol. 63 no. 1, pp. 123-128, DOI: 10.3987/com-03-9915, 2004.
[45] L. P. Yan, D. L. Chen, F. P. Wang, "Structure elucidation of diterpenoid alkaloids from Delphinium campylocentrum," Organic Chemistry, vol. 27 no. 8, pp. 976-980, 2007.
[46] X. X. Liang, Studies on the Chemical Constituents of Alkaloids in Delphinium davidii, 2007.
[47] Y. Q. He, Z. Y. Ma, Q. Yang, "Study on chemical constituents from Delphinium honanense var. piliteram," China Journal of Chinese Materia Medica, vol. 33 no. 23, 2008.
[48] Y. L. Han, Studies on Chemical Constitudents of Gueldenstaedita multiflora Bge. and Delphinium grandiflorum L, 2007.
[49] L. H. Shan, L. Chen, F. Gao, "Diterpenoid alkaloids from Delphinium anthriscifolium var. majus," Scientific Reports, vol. 7 no. 1,DOI: 10.1038/s41598-017-05372-3, 2017.
[50] J. F. Zhang, L. H. Shan, F. Gao, "Five new C 19 -diterpenoid alkaloids from Delphinium tianshanicum W. T. wang," Chemistry and Biodiversity, vol. 14 no. 4,DOI: 10.1002/cbdv.201600297, 2017.
[51] H. Yamashita, M. Katoh, A. Kokubun, "new C 19 -diterpenoid alkaloids from Delphinium elatum," Phytochemistry Letters, vol. 24,DOI: 10.1016/j.phytol.2017.12.013, 2018.
[52] X.-Y. Uchimura, Q.-H. Chen, F.-P. Wang, "New C20-Diterpenoid Alkaloids from Delphinium anthriscifolium var. savatieri," Helvetica Chimica Acta, vol. 92 no. 4, pp. 745-752, DOI: 10.1002/hlca.200800376, 2009.
[53] C. Z. Lin, Z. X. Zhao, S. M. Xie, "Diterpenoid alkaloids and flavonoids from Delphinium trichophorum," Phytochemistry, vol. 97, pp. 88-95, DOI: 10.1016/j.phytochem.2013.10.011, 2014.
[54] T. M. Gabbasov, E. M. Tsyrlina, D. M. Anatov, M. S. Yunusov, "Flexiosine, a new C20-diterpene alkaloid from roots of Delphinium flexuosum," Chemistry of Natural Compounds, vol. 53 no. 1, pp. 105-108, DOI: 10.1007/s10600-017-1920-8, 2017.
[55] F.-Z. Spirikhin, Q.-H. Chen, X.-Y. Liu, "Diterpenoid alkaloids from Delphinium tatsienense," Helvetica Chimica Acta, vol. 94 no. 5, pp. 853-858, DOI: 10.1002/hlca.201000322, 2011.
[56] M. S. Wang, K. Alfred, "Diterpenoid alkaloids from the roots of Delphinium scabriflorum," Journal of Natural Products, vol. 67 no. 9, pp. 1574-1576, 2004.
[57] F. Z. Chen, S. H. Li, Q. Zhao, X. J Gou, "Tatsienensine, a norditerpenoid alkaloid from Delphinium tatsienense," Natural Product Communications, vol. 14 no. 11,DOI: 10.1177/1934578x19868391, 2019.
[58] Y.-S. Zou, Z. Dawa, C.-Z. Lin, "New amide alkaloids from Delphinium brunonianum," Fitoterapia, vol. 136,DOI: 10.1016/j.fitote.2019.104186, 2019.
[59] Z. D. Zhang, X. A. Li, Y. X. Chen, "Chemical constituents from the Delphinium grandiflorum herbs," Journal of Chinese Medicinal Materials, vol. 40 no. 9, pp. 2077-2080, 2017.
[60] Y. S. Zou, D. W. Zeren, C. Z. Lin, "Chemical constituents from Delphinium brunonianum," Journal of Chinese Medicinal Materials, vol. 42 no. 8, pp. 1806-1809, 2019.
[61] P. T. Hari, P. S. Ram, P. T. Yagna, "An assessment of ethnomedicinal use, chemical constituents analysis and bioactivity evaluation on high altitude medicinal plant Delphinium brunonianum of Manang District," Nepal Journal of Science and Technology, vol. 12, pp. 111-118, DOI: 10.3126/njst.v12i0.6488, 2011.
[62] S. Y. Ren, G. L. Qiansiri, H. Y. Wang, "Extraction and antibacterial test of alkaloid from root of Delphinium grandiflorum," Journal of Dalian Polytechnic University, vol. 28 no. 4, pp. 248-250, 2009.
[63] I. Zaheer, S. Z. Rahman, R. A. Khan, "Evaluation of analgesic activity of extracts of Delphinium denudatum in animal models: a dose dependent pre-clinical trial (Article)," Journal of Clinical and Diagnostic Research, vol. 12 no. 12, pp. FC1-FC4, DOI: 10.7860/jcdr/2018/37415.12322, 2018.
[64] Y. V. Nesterova, T. N. Povetieva, Y. G. Nagornyak, T. V. Vetoshkina, T. I. Andreeva, "Correction of adjuvant arthritis with delphinium extracts and alkaloids," Bulletin of Experimental Biology and Medicine, vol. 147 no. 6, pp. 711-714, DOI: 10.1007/s10517-009-0599-7, 2009.
[65] G. S. Suslov, Z. P. Jia, S. Z. Qiao, "Experimental studies on haemostasis and analgesic effect of Delphinium grandiflorum L. var. leiocarpum," Chinese Journal of Hospital Pharmacy, vol. 30 no. 11, pp. 898-900, 2010.
[66] Y. V. Nesterova, T. N. Poveteva, Y. G. Nagornyak, T. I. Andreeva, N. I. Suslov, "Effects of bioactive substances from tall delphinium on the development of acute inflammation of different genesis," Bulletin of Experimental Biology and Medicine, vol. 145 no. 6, pp. 724-727, DOI: 10.1007/s10517-008-0196-1, 2008.
[67] L. Andreeva, Y. J. Liu, "Study of Delphinium grandiflorum flavonoids on inhibition of inflammation in mice," China Modern Medcine, vol. 18 no. 32, 2011.
[68] M. A. Ebrahimzadeh, S. F. Nabavi, S. M. Nabavi, "Biological and pharmacological effects of Delphinium elbursense," African Journal of Biotechnology, vol. 9 no. 34, pp. 5548-5555, 2010.
[69] A. Mohammad, G. A. Kumar, A. K. Najam, "In vivo psychopharmacological investigation of Delphinium denudatum and Amaranthus spinosus extracts on Wistar rats," Basic and Clinical Neuroscience Journal, vol. 8 no. 6, pp. 503-512, DOI: 10.29252/nirp.bcn.8.6.503, 2017.
[70] S. J. Zheng, C. Xu, J. Yang, "In vitro anticancer screening of Tibetan medicines," Journal of Huazhong Normal University (Natural Sciences), vol. 51 no. 3, pp. 328-334, 2017.
[71] C. Z. Lin, C. C. Zhu, F. L. Liu, "The protective effects of extracts of Delphinium trichophorum on bleomycin-induced pulmonary fibrosis in rats," Journal of Chinese Medicinal Materials, vol. 41 no. 5, pp. 1181-1185, 2018.
[72] C. González, G. Guadaño, "Antifeedant delphinium diterpenoid alkaloids. Structure-activity relationships," Journal of Agricultural and Food Chemistry, vol. 46 no. 1, 1998.
[73] M. Reina, R. Mancha, A. Gonzalez-Coloma, M. Bailen, M. L. Rodriguez, R. A. Martinez-Diaz, "Diterpenoid alkaloids from Delphinium gracile," Natural Product Research, vol. 21 no. 12, pp. 1048-1055, DOI: 10.1080/14786410701536437, 2007.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2020 Sitan Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
Plants of Delphinium are herbal medicine used in the Tibet region with whole grass as a drug, which have the effects of analgesic, antibacterial, antipyretic, and anticancer. The main bioactive compounds are alkaloids, flavonoids, and sterols. This review summarized the compounds and pharmacological effects of Delphinium and provides a reference for further research on Delphinium.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
2 Joint International Research Laboratory of Food & Medicine Resource Function, Henan University, Kaifeng 475004, Henan Province, China; Department of Environmental Studies Institute of Graduate Studies and Research Alexandria University Alexandria, Alexandria, Egypt
3 National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan University, Kaifeng 475004, Henan Province, China
4 Joint International Research Laboratory of Food & Medicine Resource Function, Henan University, Kaifeng 475004, Henan Province, China; Institute of Plant and Environmental Protection (IPEP), National Agriculture Research Center (NARC) Islamabad, Islamabad, Pakistan
5 National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Kaifeng 475004, Henan Province, China
6 National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Kaifeng 475004, Henan Province, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan University, Kaifeng 475004, Henan Province, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng 475004, Henan, China