Full text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Efforts to define research Common Data Elements try to harmonize data collection across clinical studies.

Objective

Our goal was to analyze the quality and usability of data dictionaries of HIV studies.

Methods

For the clinical domain of HIV, we searched data sharing platforms and acquired a set of 18 HIV related studies from which we analyzed 26 328 data elements. We identified existing standards for creating a data dictionary and reviewed their use. To facilitate aggregation across studies, we defined three types of data dictionary (data element, forms, and permissible values) and created a simple information model for each type.

Results

An average study had 427 data elements (ranging from 46 elements to 9 945 elements). In terms of data type, 48.6% of data elements were string, 47.8% were numeric, 3.0% were date and 0.6% were date-time. No study in our sample explicitly declared a data element as a categorical variable and rather considered them either strings or numeric. Only for 61% of studies were we able to obtain permissible values. The majority of studies used CSV files to share a data dictionary while 22% of the studies used a non-computable, PDF format. All studies grouped their data elements. The average number of groups or forms per study was 24 (ranging between 2 and 124 groups/forms). An accurate and well formatted data dictionary facilitates error-free secondary analysis and can help with data de-identification.

Conclusion

We saw features of data dictionaries that made them difficult to use and understand. This included multiple data dictionary files or non-machine-readable documents, data elements included in data but not in the dictionary or missing data types or descriptions. Building on experience with aggregating data elements across a large set of studies, we created a set of recommendations (called CONSIDER statement) that can guide optimal data sharing of future studies.

Details

Title
Analysis of data dictionary formats of HIV clinical trials
Author
Mayer, Craig S; Williams, Nick; Huser, Vojtech
First page
e0240047
Section
Research Article
Publication year
2020
Publication date
Oct 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2448621677
Copyright
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.