This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
The exploration, cognition, development, protection, and utilization of the polar region are a hallmark of the scientific and technological power, and there is also the inevitability of the right to speak for the development of global international science.
Since the 1990s, China has substantively participated in Arctic affairs, carried out extensive Arctic activities, and become a major active country in the Arctic. Compared with Russia, the United States, Canada, Denmark, Norway, and other countries in the near Arctic region, the geographical advantages of China in the Arctic routes and the Arctic region are not significant, but the northern territory of China is close to the polar region, the political and geographical environment of the border is complex, and there are the local disturbances constantly, so the patrol of boundary and space defense need to be strengthened. Moreover, with the status of China as a powerful country in science and technology, the increasing of military strength, and the national defense demand of China’s northernmost which is a high latitude frontier, China urgently needs to increase its voice in the development of polar resources. The opening of the Arctic route has an immeasurable impact on the economic and military security of China’s northeast [1–3].
The first white paper of Arctic policy, which was published by the Information Office of the State Council on January 26, 2018, points out that China is one of the countries closest to the Arctic Circle on land, and it is a “near Arctic country.” It also expounds the situation and changes of the Arctic, the relationship between China and the Arctic, the objectives and basic principles of China’s Arctic policy, and the main policy propositions of China’s participation in Arctic affairs [4, 5].
Yang [6] points out that Russia and Canada, which are the two great Arctic powers, have the right of internal water sovereignty of the Arctic waterway in law, while other countries only have the right of innocent passage. Huang and Yun [7] suggest that our government should make full use of the status as an official observer of the Arctic Council, actively participate in the international legislation of the Arctic region, and promote the legal coordination with the Arctic Rim countries, so as to ensure the smooth passage of the Arctic waterway. Guo and Hu [8] put forward the corresponding countermeasures in the impact of the Arctic waterway on the world strategic, the opportunities, and challenges, and, in the paper, a variety of geopolitical strategies are planned for reference or implementation in dealing with the Arctic route disputes.
The paper investigates and researches the application requirements and suggestions of domestic inertial navigation system, it is agreed that the navigation in the polar region is a basic technical bottleneck for China to move from a big aviation country to a power aviation country, and it is also an important technical for opening the safe passage of polar air corridor. Based on the inertial navigation technology, the paper adopts multi-information fusion to assist in collaborative navigation, analyzes and deduces the indirect grid frame of the integrated navigation system flying over the polar region, and carries out the test of the semiphysical simulation which has the relevant background engineering to prove the support of engineering application and ensure the safety and reliability of the aircraft flying over the polar region.
2. The Problem of Navigation in the Polar Region
Due to high latitude, high altitude, low temperature, low air pressure, complex physical terrain, and complex climate environment, the polar region is sparsely populated. There are some problems with the reliability and safety of various navigation equipment in the polar region when there are investigation activities. The accuracy of the inertial navigation system often changes with changes of latitude and elevation, especially that a nonpolar navigation cannot meet the navigation requirements of the polar region. There are two main problems:
(1)
The expression of nonpolar navigation parameters is meaningless in polar navigation. Especially in the north pole, all directions are south, which brings about trouble to polar navigation.
(2)
The equipment of nonpolar navigation cannot meet the requirements of the polar navigation. Due to the magnetic field of the earth and the special astronomical conditions in the polar region, the communication and navigation of the conventional situation are very different in the middle and low latitudes, and the nonpolar navigation equipment is unable to work normally in the polar region.
In the face of an intricate navigation environment of the polar region, a safe and effective method of navigation is urgently found in the polar region. Although the inertial navigation system is considered the preferred autonomous navigation device in the polar region, the inertial navigation system has the limitation of error accumulation over time, and it is difficult to complete the high-precision, long-time cruising function only by the inertial navigation system.
3. The Integrated Navigation System of SINS/CNS/GPS in the Polar Region
3.1. The Principles of SINS/CNS/GPS
The strapdown inertial navigation system (SINS) is used as a public reference system in SINS/CNS/GPS, and the global positioning system (GPS) and the celestial navigation system (CNS) are combined with SINS, respectively, to obtain the integrated navigation system of SINS/CNS/GPS. The information is processed with two independent subfilters, and then the output information of the subfilter is sent to the main filter for information fusion to obtain an optimal estimated value of the integrated error and the estimated value is to be used to correct the SINS error in real time [9–13]. The integrated navigation system in the polar region is shown in Figure 1.
[figure omitted; refer to PDF]
Further improvement lies in the following: the simulation test is conducted by an inertial navigation simulator of the polar region. The simulation of the SINS/GPS/CNS integrated navigation system in the polar region is set to fly for 8 h. The calculation period of SINS is 20 ms. The data update periods of GPS and CNS are both 1 s.
The error of initial horizontal alignment of SINS is set to 5′, the error of azimuth alignment is 10′, the error of initial velocity is 0.1 m/s, the error of initial position is 30 m, the drift of gyro is 0.01°/h, and the random walk is 0.01°/h. The drift of accelerometer is 50 ug, and the random walk is
It can be seen from Figure 4(f) that the installation error of the satellite tracker cannot be an estimated value when the aircraft is in static condition from 0 to 605 s, the installation error angles of Y and Z directions converge rapidly when the aircraft climbed in 635∼750 s, and the installation error angles in X direction converge rapidly when the aircraft have a right turn from 800 to 830 s. Accordingly, the platform misalignment angle (Figure 4(a)) cannot be estimated in the stationary of the aircraft. In this stage, the error of misalignment angle depends on the installation error of the star tracker. When the estimation of the installation error converges, the misalignment angle also converges, and the error of convergence is less than 1′.
[figures omitted; refer to PDF]
The error of velocity (Figure 4(b)) and the error of position (Figure 4(c)) in the static condition are larger, and the error of velocity and the error of position also show the form of Schuler oscillation after the convergence of misalignment angle. With the bias of gyro (Figure 4(d)) and the bias of accelerometer (Figure 4(e)) gradually estimated, the amplitude error of position and velocity error of the integrated navigation system will gradually decrease.
4. Conclusion
In view of the special geographical environment of “two high, two low, and three complex” in the polar region, it is difficult to locate and orient the aircraft when it is flying over the polar region, and it is easy to fail and get lost, but only the inertial navigation system cannot meet the accuracy requirements of global flight navigation. In this paper, based on the inertial navigation technology, multi-information fusion assisted cooperative navigation is used for analysis and deduction, the integrated navigation system based on the indirect grid framework is formed, and the semisimulation evaluation is carried out on the platform of engineering models. The simulation results show that the accuracy of the integrated navigation system of SINS/GPS/CNS in polar region is consistent with that of the integrated navigation system of SINS/GPS/CNS in low latitude. The model of integrated navigation system of INS/GPS/CNS in polar region can be optimized and improved, and its navigation accuracy can be evaluated, which can provide the technology of engineering application, ensure the safety and reliability of aircraft flying over the polar region, and ensure the right of China to explore protection, development, and utilization in polar region.
Acknowledgments
This work was partially supported by the Natural Science Foundation of Shaanxi Province (Project no. 2020JM-488), National Program on Key Basic Research Project (Project no. 2017YFC0704200), and the Special Scientific Research Project of the Education Department of Shaanxi Province (Project no. 20JK0728).
[1] X. Ma, L. I. U. Yang, Yu Liu, "Progress and comparative analysis of domestic and international studies on Arctic shipping routes safety based on knowledge mapping," Journal of Transport Information and Safety, vol. 38 no. 223, 2020.
[2] X. Yuan, M. Hu, "Review of China’s participation in the Arctic International Cooperation," Haiyang Jingji, vol. 9 no. 5, pp. 29-35, 2019.
[3] C. Zhang, "The globalization background of Arctic governance and China’s participation strategy research," China Soft Science, vol. 12 no. 4, pp. 17-29, 2019.
[4] H. Wan, M. Xu, S. Fu, "A behavior analysis of ship characteristics in Arctic Northeast Passage," Journal of Transport Information and Safety, vol. 38 no. 224, pp. 89-95, 2020.
[5] Y. Xiao, "Restraint and breakthrough: a probe into the approach of raising China’s normative discourse power in the Arctic Council," Peace and Development, vol. 2020 no. 1, pp. 35-49, 2020.
[6] X. Yang, "The dispute of the Arctic passage freedom of navigation and the countermeasure of our country," Zheng Fa Lun Cong, vol. 6 no. 10, pp. 88-100, 2019.
[7] D. Huang, Y. Yun, "The embeddedness of responsibilities: the path choice of China’s participation in Arctic security governance," Journal of Xiangtan University( Philosophy and Social Sciences), vol. 42 no. 2, pp. 13-19, 2018.
[8] N. Guo, M. Hu, "Evaluation of comprehensive strength of stakeholders in the Arctic passage based on geo-economic benefits," Marine Economy, vol. 8 no. 6, 2018.
[9] G. Hu, W. Wang, Y. Zhong, B. Gao, C. Gu, "A new direct filtering approach to INS/GNSS integration," Aerospace Science and Technology, vol. 77, pp. 755-764, DOI: 10.1016/j.ast.2018.03.040, 2018.
[10] B. Zhou, W. Zhao, Y. Rong, X. Hu, "Robust adaptive Kalman filtering algorithm for integrated navigation based on MEMS-INS/GNSS," Navigation and Control, vol. 17 no. 4, pp. 14-20, 2018.
[11] W. Jiang, Y. Li, C. Rizos, "Improved decentralized multi-sensor navigation system for airborne applications," GPS Solutions, vol. 22 no. 3,DOI: 10.1007/s10291-018-0743-9, 2018.
[12] J. Chen, S. Yuan, J. Cheng, X. Cao, "Research on integrated calibration based on improved federated Kalman filter," Navigation Positioning & Timing, vol. 3 no. 6, pp. 21-25, 2016.
[13] G. Hu, B. Gao, Y. Zhong, C. Gu, "Unscented Kalman filter with process noise covariance estimation for vehicular INS/GPS integration system," Information Fusion, vol. 64, pp. 194-204, DOI: 10.1016/j.inffus.2020.08.005, 2020.
[14] H. Zhang, L. Zhang, X. Wang, L. I. Lin, Y. Zhong, "Optimization design and error analysis of strapdown inertial navigation system mechanization in polar region," Journal of Chinese Inertial Technology, vol. 23 no. 6, pp. 701-706, 2015.
[15] Y. Liu, W.-F. Tian, J.-K. Zhao, B. A. O. Qi-Lian, Z. H. U. Shi-Qing, "Application of a new developed adaptive federated Kalman filter in tactical missile integrated navigation system," Journal of Chinese Inertial Technology, vol. 20 no. 5, pp. 577-582, 2012.
[16] X. Yao, M. Chen, Z. Zuo, J. Wang, "Performance analysis on polar BDS PPP," Journal of Navigation and Positioning, vol. 6 no. 4, pp. 57-63, 2018.
[17] Q. Zhou, Y. Yue, X. Zhang, Y. Tian, "Indirect grid inertial navigation mechanization for transpolar aircraft," Journal of Chinese Inertial Technology, vol. 22 no. 1, pp. 18-22, 2014.
[18] G. Zhang, G. Yan, J. Weng, H. Yang, "N-vector inertial navigation mechanization algorithm for transpolar aircraft," Journal of Chinese Inertial Technology, vol. 25 no. 5, pp. 606-617, 2017.
[19] L. Song, Z. Duan, B. He, "Researched on SINS/GPS integrated navigation system based on grid reference frame in the polar region," Advances in Mechanical Engineering, vol. 9 no. 9,DOI: 10.1177/1687814017727475, 2017.
[20] L. Song, W. Zhao, Y. Cheng, "Based on grid reference frame for SINS/CNS integrated navigation system in the polar regions," Complexity, vol. 2019,DOI: 10.1155/2019/2164053, 2019.
[21] X. Huang, J. Liu, Y. Wu, "An evaluation method for the head accuracy of inertial navigation system in flight test," Navigation and Control, vol. 2017 no. 4, 2017.
[22] Y. I. N. Lu, Z. Deng, D. Zhu, E. N. Hu, "An information quality assessment method for multi-source integrated positioning system," Navigation Positioning & Timing, vol. 2017 no. 6, pp. 78-82, 2017.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2020 Li-Jun Song et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
Because the accuracy of the existing airborne navigation is lacking in the polar region, it is difficult to ensure the safety and reliability of the aircraft when it is flying over the polar region. The integrated navigation system based on the inertial navigation technology uses multi-information fusion to assist collaborative navigation and obtain an indirect grid navigation algorithm that combines the azimuth navigation algorithm and the grid navigation algorithm to solve the existing problems. This paper analyzes the principle of the inertial navigation system in the polar region, the semiphysical simulation experiments are carried out by using the navigation theory and the background engineering, and the accuracies of the integrated navigation system of the indirect grid frame in the polar region and the integrated navigation system in the middle and low latitudes are consistent, which verifies the feasibility and effectiveness of the SINS/CNS/GPS integrated navigation system in the polar region. In addition, the paper provides the theoretical basis and the application of engineering to achieve the SINS/CNS/GPS integrated navigation system in the polar region.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Xi’an University of Architecture and Technology, School of Information and Control Engineering, Xi’an, Shaanxi 710055, China
2 Shanghai Aerospace Control Technology Institute, Shanghai 201109, China