Full text

Turn on search term navigation

© 2020 Meier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The research objective was to study the presence of DNA damages in haddock exposed to petrogenic or pyrogenic polyaromatic hydrocarbons (PAHs) from different sources: 1) extracts of oil produced water (PW), dominated by 2-ring PAHs; 2) distillation fractions of crude oil (representing oil-based drilling mud), dominated by 3-ring PAHs; 3) heavy pyrogenic PAHs, mixture of 4/5/6-ring PAHs. The biological effect of the different PAH sources was studied by feeding juvenile haddock with low doses of PAHs (0.3–0.7 mg PAH/kg fish/day) for two months, followed by a two-months recovery. In addition to the oral exposure, a group of fish was exposed to 12 single compounds of PAHs (4/5/6-ring) via intraperitoneal injection. The main endpoint was the analysis of hepatic and intestinal DNA adducts. In addition, PAH burden in liver, bile metabolites, gene and protein expression of CYP1A, GST activity, lipid peroxidation, skeletal deformities and histopathology of livers were evaluated. Juvenile haddock responded quickly to both intraperitoneal injection and oral exposure of 4/5/6-ring PAHs. High levels of DNA adducts were detected in livers three days after the dose of the single compound exposure. Fish had also high levels of DNA adducts in liver after being fed with extracts dominated by 2-ring PAHs (a PW exposure scenario) and 3-ring PAHs (simulating an oil exposure scenario). Elevated levels of DNA adducts were observed in the liver of all exposed groups after the 2 months of recovery. High levels of DNA adduct were found also in the intestines of individuals exposed to oil or heavy PAHs, but not in the PW or control groups. This suggests that the intestinal barrier is very important for detoxification of orally exposures of PAHs.

Details

Title
DNA damage and health effects in juvenile haddock (Melanogrammus aeglefinus) exposed to PAHs associated with oil-polluted sediment or produced water
Author
Meier, Sonnich; Karlsen, Ørjan; Jeremie Le Goff; Sørensen, Lisbet; Sørhus, Elin; Pampanin, Daniela M; Donald, Carey E; Fjelldal, Per Gunnar; Dunaevskaya, Evgenia; Romano, Marta; Caliani, Ilaria; Casini, Silvia; Bogevik, André S; Olsvik, Pål A; Myers, Mark; Grøsvik, Bjørn Einar
First page
e0240307
Section
Research Article
Publication year
2020
Publication date
Oct 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2453677136
Copyright
© 2020 Meier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.