Full text

Turn on search term navigation

Copyright © 2020 Leslie Amaral et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Cisplatin is a widely used antineoplastic agent that has DNA as the main target, though cellular resistance hampers its therapeutic efficacy. An emerging hallmark of cancer cells is their altered metabolism, characterized by increased glycolysis even under aerobic conditions, with increased lactate production (known as the Warburg effect). Although this altered metabolism often results in increased resistance to chemotherapy, it also provides an opportunity for targeted therapeutic intervention. It has been suggested that cisplatin cytotoxicity can be affected by tumor metabolism, though with varying effects. We therefore sought to better characterize how lactate affects cisplatin sensitivity in the simplified Saccharomyces cerevisiae model. We show that lactate renders yeast cells resistant to cisplatin, independently of growth rate or respiration ability. We further show that histone acetylation is not affected, but histone phosphorylation is decreased in lactate-containing media. Finally, we show that Rad4p, essential for nucleotide excision repair, is required for the observed phenotype and thus likely underlies the mechanism responsible for lactate-mediated resistance to cisplatin. Overall, understanding how lactate modulates cisplatin sensitivity will aid in the development of new strategies to overcome drug resistance.

Details

Title
Lactate Induces Cisplatin Resistance in S. cerevisiae through a Rad4p-Dependent Process
Author
Amaral, Leslie 1 ; Mendes, Filipa 1 ; Côrte-Real, Manuela 1 ; Maria João Sousa 1 ; Susana Rodrigues Chaves 1   VIAFID ORCID Logo 

 Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal 
Editor
Kum Kum Khanna
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
19420900
e-ISSN
19420994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2456402407
Copyright
Copyright © 2020 Leslie Amaral et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/